Rounding and Bounds

If $x=10.28$ is correct to 2 dec places
then $\quad 10.275 \leqslant x<10.285$

If $\quad x=3270$ to 3 s.f.

$$
3265 \leqslant x<3275
$$

These are known as error intervals

Establish error intervals for the following

1) $a=46.3$ to ld.p. $\quad 46.25 \leq a<46.35$
2) $b=87000$ to 2 s.f $86500 \leq b<87500$
3) $c=10.0$ to ld.p $9.95 \leq c<10.05$
4) $d=217$ to 3 s.f $216.5 \leq d<217.5$
5) $e=1,000,000$ to (s.f. $500,000 \leqslant e<1,500,000$

Bounds - Upper and Lower
$E_{x} 1$

Suppose a carpet measures $4 \mathrm{~m} \times 3 \mathrm{~m}$ each measurement correct to (s.f.

Establish error bounds for the permeter and area of this carpet Note the nominal values are

$$
\begin{aligned}
& \text { Perimeter }=4+3+4+3=14 \mathrm{~m} \\
& \text { Area }=4 \times 3=12 \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& 3.5 \mathrm{~m} \leq \text { Length }<4.5 \mathrm{~m} \\
& 2.5 \mathrm{~m} \leq \text { Width }<3.5 \mathrm{~m}
\end{aligned}
$$

Smallest perimeter $=3.5+2.5+3.5+2.5=12 \mathrm{~m}$
Smallest area $=3.5 \times 2.5=8.75 \mathrm{~m}^{2}$
Largest perimeter $=4.5+3.5+4.5+3.5=16 \mathrm{~m}$
Largest area $=4.5 \times 3.5=15.75 \mathrm{~m}^{2}$

$$
\begin{aligned}
& 12 \mathrm{~m} \leq \text { Perimeter }<16 \mathrm{~m} \\
& 8.75 \mathrm{~m}^{2} \leq \text { Area }<15.75 \mathrm{~m}^{2}
\end{aligned}
$$

Speed, Time, Distance

$$
\text { Average Speed }=\frac{\text { Dist }}{\text { Time }}
$$

Suppose the school running track 100 m lane is 100 m correct to nearest metre suppose stop watch measures correct to nearest second.

John runs the 100 m at sports day in 12 seconds. Find upper and lower bounds for his speed.

Nominal speed $=\frac{100}{12}=8.33 \mathrm{~ms}^{-1}$

$$
\begin{aligned}
99.5 \mathrm{~m} & \leq \text { Distance }<100.5 \mathrm{~m} \\
11.5 \mathrm{~s} & \leq \text { Tine }<12.5 \mathrm{~s} \\
\text { Max Speed } & =\frac{100.5}{11.5}=8.74 \mathrm{~ms}^{-1} \\
\text { Min speed } & =\frac{99.5}{12.5}=7.96 \mathrm{~ms}^{-1}
\end{aligned}
$$

$7.96 \mathrm{~ms}^{-1}<$ speed $<8.74 \mathrm{~ms}^{-1}$

Ex 3
I have a plank 6 m long correct to nearest 10 cm

I cut off a piece $A 3.5 \mathrm{~m}$ to nearest 5 cm leaving piece B

Find bounds for the length of B

$$
\begin{gathered}
5.95 \mathrm{~m} \leq P \operatorname{lank}<6.05 \mathrm{~m} \\
3.475 \mathrm{~m} \leq A<3.525 \\
B=P-A \\
\text { Max B } B=6.05-3.475=2.575 \mathrm{~m} \\
\text { Min } B=5.95-3.525=2.425 \mathrm{~m} \\
2.425 \mathrm{~m} \leq \begin{array}{l}
\text { Leg } t h \\
\text { of } B
\end{array}<2.575 \mathrm{~m}
\end{gathered}
$$

