Probability Trees
Suppose a bag contains 7 red counters and 3 green counters. A counter is chosen at random, its colour is noted and it is replaced in the bag. A second counter is chosen at random and its colour noted.
i) Represent the possible outcomes on a probability tree.

ii) Find probability we choose one of each colour

$$
=\frac{21}{100}+\frac{21}{100}=\frac{42}{100}
$$

CONDITIONAL PROBABILITY
Exact same question but do not replace the first counter in the bag.
istpick ind pick

Prob(one of each colour) $=\frac{21}{90}+\frac{21}{90}=\frac{42}{90}$
$\operatorname{Prob}(b o t h$ green $)=\frac{6}{90}$

Spin a coin 3 times. What is prob we get exactly 2 heads

5 red, 3 blue, 2 green Choose 2 without replacement Draw tree and fins P (Both same colour)

$$
P(\text { Both sane colour })=\frac{20}{90} \times \frac{6}{90}+\frac{2}{90}=\frac{28}{90}
$$

1. A bag contains 7 blue balls and 3 red balls. A ball is selected at random, its colour noted and it is replaced. A second ball is selected at random and its colour noted. Represent the various possible outcomes on a probability tree and calculate:
a) The probability both balls selected are the same colour.
b) The probability at least one of the balls is red.

$$
\begin{aligned}
& \frac{7}{10} \times \frac{7}{10}=\frac{49}{100} \\
& \frac{7}{10} \times \frac{3}{10}=\frac{21}{100} \checkmark \\
& \frac{3}{10} \times \frac{7}{10}=\frac{21}{100} \checkmark \\
& \frac{3}{10} \times \frac{3}{10}=\frac{9}{100}
\end{aligned}
$$

a) $P($ Bott same colous $)=\frac{49}{100}+\frac{7}{100}=\frac{58}{100}$
b) $P(A \notin$ least one red $]=\frac{21}{100}+\frac{9}{100}+\frac{21}{100}=\frac{51}{100}$

