Projectiles - Find the Cartesian Equation of the Path

$$y = (u \sin \alpha)t - \frac{1}{2}gt^2$$

$$y = \frac{(U\sin x) \times - \frac{L}{2}g \times^{2}}{U\cos x}$$

$$y = x \tan \alpha - \frac{9x^2}{2U^2} \sec^2 \alpha$$

$$y = \chi \epsilon_{and} - \frac{g \times^2}{2 u^2} (1 + \epsilon_{an}^2 \alpha)$$

- A ball is kicked from ground level over horizontal ground. It leaves the ground at a speed of 25 m s 1 and at an angle θ to the horizontal such that $\cos \theta = 0.96$ and $\sin \theta = 0.28$.
 - (i) Show that the height, y m, of the ball above the ground t seconds after projection is given by $y = 7t 4.9t^2$. Show also that the horizontal distance, x m, travelled by this time is given by x = 24t.
 - (ii) Calculate the maximum height reached by the ball. [2]
 - (iii) Calculate the times at which the ball is at half its maximum height.

Find the horizontal distance travelled by the ball between these times. [4]

- (iv) Determine the following when t = 1.25.
 - (A) The vertical component of the velocity of the ball.
 - (B) Whether the ball is rising or falling. (You should give a reason for your answer.)
 - (C) The speed of the ball. [5]
- (v) Show that the equation of the trajectory of the ball is

$$y = \frac{0.7x}{576} (240 - 7x).$$

Hence, or otherwise, find the range of the ball.

[5]

U=25m5"

cos 0 = 0-96 sig 0 = 0.28

i) x = Ucos &x t = 25 x 0.96 t = 246

$$y = U \sin \alpha \times \epsilon - \frac{1}{2} g \epsilon^{2}$$

= 25 x 0.28 \tau - 4.9 \tau^{2}

 $V_3^2 = U_3^2 + 2as$ $V_{5^2} = 7^2 - 19.6 \text{ y}$

At max height Vy = 0

$$0 = 7^{2} - 19.69$$

$$19.65 = 49$$

$$9 = \frac{49}{19.6} = 2.5 \text{ m}$$

Half max height =
$$2.5 \div 2 = 1.25$$
n

 $y = 76 - 4.96^2$
 $1.25 = 76 - 4.96^2$
 $4.96^2 - 76 + 1.25 = 0$

By alc
$$E = 1.219s$$
 $E = 0.2092s$
 $E = 1.22s$ $E = 0.21s$

when
$$6 = 1.219$$
 $x = 24 \times 1.219 = 29.256 \text{n}$
 $6 = 0.2092$ $x = 24 \times 0.2092 = 5.0208 \text{ m}$
Distance travelled = $29.256 - 5.0208$
 $6 = 24.2 \text{ m}$

- iv) E = 1.25
 - A) $V_3 = U_3 + a \in$ $V_3 = 7 9.86$ $V_3 = 7 9.8 \times (.25)$ $V_3 = -5.25 \text{ ms}^{-1}$
 - B) Falling since Vy <0

speed =
$$\sqrt{24^2 + (-5.25)^2} = 24.6 \,\mathrm{mi}$$

$$x = 24t$$
 $y = 7t - 4.4t^{2}$

Sub in (1)
$$y = \frac{7x}{24} - 4.9 \times \frac{2}{576}$$

$$5 = \frac{168 \times -4.9 \times^2}{576}$$

$$y = \frac{0.7 \times (240 - 7 \times)}{576}$$

Lands when
$$y = 0$$
=> $\frac{0.7x(240-7x)}{576} = 0$

=>
$$x = 0$$
 or $240 - 7x = 0$
 $240 = 7x$
 $\frac{240}{7} = x$
 $x = 34.3 \text{ m}$