

Three ways probabilities can be expressed Fractions Percentages Decimals
eg

$\frac{1}{2}$	50%	0.5
$\frac{1}{4}$	25%	0.25

You must not use ratios such as 50:50

A die (or dice) it fair san give a $1,2,3,4,5,6$ as the out cone of a roll $\operatorname{Prob}(1)$ or $P(1)=\frac{1}{6}$

$$
\begin{aligned}
& P(2)=\frac{1}{6} \\
& P(3)=\frac{1}{6} \\
& P(4)=\frac{1}{6} \\
& P(5)=\frac{1}{6} \\
& P(6)=\frac{1}{6}+
\end{aligned}
$$

Mutually Exclusive events are events which cannot both happen at the same time

The 'OR' Rule
If two events A and B are mutually exclusive then probability of A or B happening written as $P\left(A_{\cup} B\right)$ is given by

$$
P(A \cup B)=P(A)+P(B)
$$

Ex $\quad P(5.6)=P(5)+P(6)$

$$
=\frac{1}{6}+\frac{1}{6}=\frac{2}{6}=\frac{1}{3}
$$

because rolling a 5 or a 6 are mutually exclusive events.

Not all events are mutually exclusive Ex Let A be the event get anevennumber

Let B be the event get number >3
Then $P(A)=\frac{3}{6} \quad P(B)=\frac{3}{6}$
Bot $P(A \cup B)=\frac{4}{6}$ not $\frac{6}{6}$

$$
\{2,4,6,5\}
$$

These probabilities for A and B could not simply be added because A and B are not mutually exclusive 4 and 6 are in both A and B

Venn Diagrams
Let A be even number B be number >3

$$
\begin{aligned}
& P(A \cup B)=\frac{4}{6}=\text { Prob of } A \text { or } B \text { or both } \\
& P(A, B)=\frac{2}{6}=\text { Prob of } A \text { and } B \text { happening }
\end{aligned}
$$

$A \cup B$ is pronounced A union B
$A \cap B$ is pronounced A intersect B

Experimental Probability
Drawing Pin

What is the probability of outcomes A and B There is no theoretical answer.
If we experimented and sot $b 57$ times and $a<3$ times we could suggest

$$
P(b)=57 \% \text { and } P(a)=43 \%
$$

More repetitions would mate our probabilities
more relirble.

