Triangles and Quadrilaterals
Triangles

3 angles each 60°
3 sides same length

right-angled triangle usually scalene
but can be isosceles

Theorem An exterior angle of a triangle is equal to the sum of the interior opposites

Proof

$$
\begin{aligned}
& \alpha+\beta+\delta=180^{\circ} \quad(<\text { sum of } \Delta) \\
& \therefore \quad \delta=180-\alpha-\beta
\end{aligned}
$$

But $\delta+\gamma=180^{\circ}$ (Ls on a str line)

$$
\therefore \quad \gamma=180^{\circ}-\delta
$$

Sub for δ

$$
\begin{aligned}
& \gamma=180^{\circ}-(180-\alpha-\beta) \\
& \gamma=180-180+\alpha+\beta \\
& \gamma=\alpha+\beta
\end{aligned}
$$

\therefore the exterior angle γ is equal to the sum of the inferior opposites α and β.

Quadrilaterals
The angles of any quadrilateral sum to 360°

Quadrilateral

Trapezium one pair of parallel sides

Parallelogram 2 pairs of parallel sides Each pair are equal in length Opposite angles are equal Diagonals bisect each other

Rhombus
Parallelogram with 4 equal sides Diagonals bisect at 90°

Rectangle
Parallelogram with 4 right angles

Square
is the regular quadrilateral it is a rhombus with 4 right angles

Kite
2 pairs of equal sides but a pair of equal sides are adjacent not opposite
Diagonals cross at 90° One diagonal is bisected by the other

Naming Angles

$$
0^{\circ}<\alpha<90^{\circ}
$$

Acute

$$
\alpha=90^{\circ}
$$

Right angle

180

$$
90^{\circ}<\alpha<180^{\circ}
$$

Obtuse

$$
\alpha=180^{\circ}
$$

straight line

$$
180^{\circ}<\alpha<360^{\circ}
$$

Reflex angle

Parallel Lines
See Parallel Lines Fact Sheet

Corresponding Angles are Equal
Alternate Angles are Equal
Allied Angles add to 180°
(Also Culled Co-Intesior Angles)

