Circle Theorem Proofs

1) The angle in a semi-circle is 90°

Proof

Join $O C$ to form two isosceles Δs
Let $\angle O C A=\alpha \quad$ Let $\angle O C B=\beta$

$$
\Rightarrow \angle O A C=\alpha \quad \Rightarrow \angle O B C=\beta
$$

(base Ls off isos Δs)

$$
\begin{array}{ll}
\angle A O C=180-2 \alpha & (\angle \text { sumot } \Delta) \\
\angle B O C=180-2 \beta & (\angle \text { sun ot } \Delta)
\end{array}
$$

But $\angle A O C+\angle B O C$ is a straight line $=180^{\circ}$

$$
\begin{array}{r}
\therefore \quad 180-2 \alpha+180-2 \beta=180 \\
180+180-180=2 \alpha+2 \beta \\
180=2 \alpha+2 \beta \\
90=\alpha+\beta
\end{array}
$$

$$
\therefore \angle A C B=90^{\circ}
$$

\therefore an angle in a semi-circle $=90^{\circ}$
2) The angle subtended at the centre by an arc os chord is twice the angle subtended at the circumference

Proof (limited to simplest case)

Join and extend $O C$ to form two isosceles Δs

Let $\angle A C O=\alpha$ and $\angle B C O=\beta$
$\Rightarrow \angle O A C=\alpha$ and $\angle O B C=\beta$
$\angle A O C=180-2 \alpha \quad(\angle$ sumot $\Delta)$
$\angle B O C=180-2 \beta \quad(\angle$ sum of $\Delta)$

$$
\begin{aligned}
\angle A O B & =360^{\circ}-(180-2 \alpha)-(180-2 \beta) \\
& =360-180+2 \alpha-180+2 \beta \\
& =2 \alpha+2 \beta \\
& =2(\alpha+\beta) \\
& =2 \times \angle A C B
\end{aligned}
$$

Angle at centre twice angle at circumference
3) Angles in the same segment are equal

Proof

Let $A C B=\alpha$
Join $O A$ and $O S$
then $\angle A O B=2 k$
(Cat centre twice Lat circumference)

$$
\Rightarrow \angle A D B=\alpha
$$

(L at centre twice Lat circumference)

$$
\therefore \angle A C B=\angle A D B
$$

Angles in the segment are equal
4) Opposite angles of a cyclic quadrilateral add up to 180° (are supplementary)
Proof

Let $\angle A B C=\alpha$
Let $\angle A D C=\beta$
Label centre 0 Join OA and OC

$$
\angle A O C(\text { major })=2 \alpha
$$

$\angle A O C($ mono $)=2 \beta$
(<at centre twice $<$ at cire)

$$
\begin{aligned}
2 \alpha+2 \beta & =\text { full circle }=360^{\circ} \\
\Rightarrow \alpha+\beta & =180^{\circ}
\end{aligned}
$$

Opposite angles of a cyclic quad add up 180°
5) Alternate Segment Theorem

The angle between a tangent and a chord is equal to an angle made by the chord in the alternate segment

Proof
Join $O A$ and $O B$ to form radii
Then $\angle D A \Delta=90^{\circ}$ (tangent-radius)

$$
\begin{aligned}
& \Rightarrow B A O=90-\alpha \\
& \Rightarrow A B O=90-\alpha \quad(\text { sos } \Delta) \\
& \therefore \angle A O B=180-(20-\alpha)-(90-\alpha)
\end{aligned}
$$

$$
\begin{aligned}
& \angle A O B=180-90+\alpha-90+\alpha \\
& \angle A O B=2 \alpha
\end{aligned}
$$

$\therefore \angle A C B=\alpha \quad$ (\angle at centre is twice Lat the cire)

