A linear sequence is a sequence where consecutive terms have a common difference. They can be increasing or decreasing.

Examples
1)

$$
\begin{array}{llll}
2 \\
3 & 4 & 6 & 7 \\
7 & 9 \\
\hline
\end{array} \ldots \ldots .
$$

$$
\text { deft }=2
$$

Finding a formula for $n^{t h}$ term

$$
\begin{aligned}
n^{t h} \text { term } & =2 n+1 \\
10^{t^{n}} \text { term } & =2 \times 10+1=21 \\
25^{t h} \text { term } & =2 \times 25+1=51
\end{aligned}
$$

If the sequence is increasing each term by 2 the $n^{t h}$ term will have $2 n$ in it. This generates the $2 x$ table and we look to see what adjustment is required to align with the sequence.
2)

$$
\begin{aligned}
& 4{ }^{8}{ }^{12} 16,20 \\
& 1,5, a, 13,17, \ldots \\
& n^{6 h} \text { term }=4 n-3 \\
& 10^{6 n} \text { term }=4(10)-3=37 \\
& 25^{\text {th }} \text { term }=4(25)-3=97
\end{aligned}
$$

$$
\text { diff }=4
$$

Exercise Find $n^{t h}$ term, $10^{\text {th }}$ term, $25^{t h}$ term

1) $8,11,14,17, \ldots$

$$
n^{t h} \text { term }=3 n+5, \quad 10^{00} \text { term }=35 \quad 25^{\circ} \text { term }=80
$$

2)

$$
\begin{aligned}
& 10,11,12,13, \ldots \\
& n^{\text {th }} \text { term }=n+9,10^{\text {th }} \text { tern }=19,25^{\text {th }} \text { term }=34
\end{aligned}
$$

3)

$$
\begin{aligned}
& 5,10,15,20, \ldots \\
& n^{t h} \operatorname{term}=5 n \quad 10^{\text {th }} \text { term }=50 \quad 25^{\text {th }} \text { term }=125
\end{aligned}
$$

4)

$$
2,9,16,23,30, \ldots
$$

$$
n^{\text {th }} \text { term }=7 n-5, \quad 10^{t h} \text { tern }=65, \quad 25^{\text {th term }}=170
$$

5)

$$
\begin{aligned}
& -4,-1,2,5, \ldots \\
& n^{\text {th }} \text { term }=3 n-7,10^{\text {th term }}=23,25^{\text {th }} \text { term }=68
\end{aligned}
$$

Decreasing Linear Sequences
E_{x}

$$
\begin{array}{ll}
11,9,7,5, \ldots \ldots & \text { diff }=-2 \\
n^{\text {th }} \text { term } & =13-2 n \\
10^{\text {th }} \text { term } & =13-2(10)=-7 \\
25^{\text {th }} \text { term } & =13-2(25)=-37
\end{array}
$$

If the difference is -2 , meaning the sequence is decreasing, then the $n^{\text {th }}$ term will involve $-2 n$. By looking at the first term we can spot the adjustment required. Basically we ald 2 more
to the first term to find the adjustment
Ex $93,89,85,81, \ldots . \quad$ diff $=-4$

$$
\begin{aligned}
n^{\text {th }} \text { term } & =97-4 n \\
10^{t 2} \text { term } & =97-40=57 \\
25^{n} \text { term } & =97-100=-3
\end{aligned}
$$

Exercise

1) $40,37,34,31, \ldots$

$$
\begin{aligned}
n^{t y} \text { term }=43-3 n \quad 10^{t n} \text { ter } & =43-30 \quad 25^{\text {th }} \text { ter } & =43-75 \\
& =13 & =-32
\end{aligned}
$$

2)

$$
93,83,73,63, \ldots
$$

$$
\begin{aligned}
& n^{t h} \text { term }=103-10 n \quad \begin{aligned}
10^{t h} \text { tern } & =103-10025^{\text {th ten }}
\end{aligned}=103-250 \\
&=3 \\
&=-147
\end{aligned}
$$

3)

$$
31,29,27,25, \ldots \ldots
$$

$$
\begin{aligned}
n^{\text {th }} \text { term }=33-2 n & & \left.\begin{array}{rlrl}
10^{\text {th n tern }} & =33-20 & 25^{n} \text { tern } & =33-50 \\
& =13 & & =-17
\end{array}\right)=13
\end{aligned}
$$

$$
54,48,42,36, \ldots
$$

$$
\begin{array}{rlrl}
-6,-8,-10,-12, \cdots & & \\
n^{t^{2}} \text { term }=-4-2 n \quad 10^{t h} \text { term } & =-4-20 & 25^{* t} \text { tam } & =-4-50 \\
& =-24 & =-54
\end{array}
$$

5)

Linear Sequences Involving Patterns

$$
n^{t h} \text { term }=4 n+1
$$

