Pulley Systems

Example

$$\frac{2g}{8} = 8a$$

$$\frac{2 \times 9.8}{8} = a$$

$$T - 39 = 3 \times 2.45$$

$$T = 3 \times 2.45 + 3 \times 9.8$$

Two particles P and Q have mass 0.5 kg and m kg respectively, where m < 0.5. The particles are connected by a light inextensible string which passes over a smooth, fixed pulley. Initially P is 3.15 m above horizontal ground. The particles are released from rest with the string taut and the hanging parts of the string vertical, as shown in Figure 4. After P has been descending for 1.5 s, it strikes the ground. Particle P reaches the ground before Q has reached the pulley.

- (a) Show that the acceleration of P as it descends is $2.8 \,\mathrm{m \, s^{-2}}$.
- (b) Find the tension in the string as P descends.

 (3)

(3)

- (c) Show that $m = \frac{5}{18}$. (4)
- (d) State how you have used the information that the string is inextensible. (1)

When P strikes the ground, P does not rebound and the string becomes slack. Particle Q then moves freely under gravity, without reaching the pulley, until the string becomes taut again.

(e) Find the time between the instant when P strikes the ground and the instant when the string becomes taut again.

(6)

a)
$$P = fa(15 = 3.15 \text{ m in } 1.5 \text{ s}$$

$$S = U + 2a + 2a + 1.5^{2}$$

$$3.15 = 0 + 2a + 1.5^{2}$$

$$3.15 = 9a$$

$$3.15 \times 8 = a$$

$$4 = 2.8 \text{ ms}^{-2}$$

b) N2L for P
$$F = ma$$

 $0.5q - T = 0.5 \times 2.8$
 $0.5 \times 9.8 - 0.5 \times 2.8 = T$
 $T = 3.5 N$

$$T - mg = ma$$
 $T = ma + mg$
 $T = m(a+g)$
 $3.5 = m(2.8+9.8)$
 $\frac{3.5}{12.6} = m$
 $m = \frac{5}{18} kg$

$$m = \frac{5}{18} Kg$$

d) accelerations for both particles are the same

e) Find speed of P (and therefore Q) when it hits ground

$$V = U + at$$

 $V = 0 + 2.8 \times 1.5 = 4.2 \text{ ms}^{-2}$

Consider a under gravity measuring distance above point where string becomes slack and then tast again

$$0 = E(4-2-4.9E)$$

$$E = 0$$
 or $4.2 - 4.96 = 0$
 $4.94 = 4.2$
 $E = 4.2$

$$t = \frac{6}{7} s$$