Pulley Systems
Example

$$
N 2 L(F=m a)
$$

for 5 kg mass

$$
\begin{align*}
& 5 g-T=5 a \tag{1}\\
& T-3 g=3 a \tag{2}
\end{align*}
$$

(1) + (2)

$$
\begin{aligned}
2 g & =8 a \\
\frac{2 \times 9.8}{8} & =a \\
a & =2.45 \mathrm{~ms}^{-2}
\end{aligned}
$$

Sub for a in (2)

$$
\begin{aligned}
& T-3 g=3 \times 2.45 \\
& T=3 \times 2.45+3 \times 9.8 \\
& T=36.75 \mathrm{~N} \\
& T=36.8 \mathrm{~N}
\end{aligned}
$$

Two particles P and Q have mass 0.5 kg and $m \mathrm{~kg}$ respectively, where $m<0.5$. The particles are connected by a light inextensible string which passes over a smooth, fixed pulley. Initially P is 3.15 m above horizontal ground. The particles are released from rest with the string taut and the hanging parts of the string vertical, as shown in Figure 4. After P has been descending for 1.5 s , it strikes the ground. Particle P reaches the ground before Q has reached the pulley.
(a) Show that the acceleration of P as it descends is $2.8 \mathrm{~m} \mathrm{~s}^{-2}$.
(b) Find the tension in the string as P descends.
(c) Show that $m=\frac{5}{18}$.
(d) State how you have used the information that the string is inextensible.

When P strikes the ground, P does not rebound and the string becomes slack. Particle Q then moves freely under gravity, without reaching the pulley, until the string becomes taut again.
(e) Find the time between the instant when P strikes the ground and the instant when the string becomes taut again.

$$
\begin{align*}
& \text { a) falls } 3.15 \mathrm{~m} \text { in } 1.5 \text { s } \tag{6}\\
& s=u t+\frac{1}{2} a t^{2} \\
& 3.15=0+\frac{1}{2} a \times 1.5^{2} \\
& 3.15=\frac{9}{8} a \\
& 3.15 \times \frac{8}{9}=a \\
& a=2.8 \mathrm{~ms}^{-2} \\
& \text { b) NZL for } P \quad F=m a \\
& 0.5 g-T=0.5 \times 2.8 \\
& 0.5 \times 9.8-0.5 \times 2.8=T \\
& T=3.5 \mathrm{~N}
\end{align*}
$$

c) NZL for Q

$$
\begin{aligned}
T & =m g=m a \\
T & =m a+m g \\
T & =m(a+g) \\
3.5 & =m(2.8+9.8) \\
\frac{3.5}{12.6} & =m \\
m & =\frac{5}{18} \mathrm{~kg}
\end{aligned}
$$

d) accelerations for both particles are the same
e) Find speed of P (and therefore Q) when it hits ground

$$
\begin{aligned}
& v=u+a t \\
& v=0+2.8 \times 1.5=4.2 \mathrm{~ms}^{2}
\end{aligned}
$$

Consider Q under sanity measuring distance above point where string beomes slack and then taut a gain

$$
\begin{aligned}
& s=u t+\frac{1}{2} a t^{2} \\
& 0=4.2 t-4.9 t^{2} \\
& 0=t(4.2-4.9 t) \\
& t 2 \text { or } 4 \cdot 2-4 \cdot a t=0 \\
& 4 . a t=4.2 \\
& t=\frac{4 \cdot 2}{4 \cdot 9} \\
& t=\frac{6}{7} \mathrm{~s}
\end{aligned}
$$

