Area and Perimeter

Rectangle

| 3 |  |  |
| :--- | :--- | :--- |
|  |  |  |
|  |  |  |

Area $=6$ units $^{2}$
$\square 1$ unit $^{2}$


Perimeter $=L+W+L+W$
$=2 L+2 w$
$=2(L+\omega)$

Triangle


The area of the triangle is half the area of the rectangle it is enclosed in

Area of triangle $=\frac{\text { base } \times \text { height }}{2}$ or $\frac{1}{2}$ base $\times$ height


Notice that depending on which side is chosen as the base the perpendicular height mag need to be measured from outside the triangle

Trapezium


$$
\text { Area }=\frac{1}{2}(a+b) h
$$

A quadrilateral with one pair of parallel sides

Basically the trapezium is the sum of two triangles $\frac{1}{2} a h+\frac{1}{2} b b$

$$
=\frac{1}{2}(a+b) h
$$

Parallelogram
Quadrilateral with two pairs of parallel sides and opposite sides equal

$$
\text { Area }=\text { base } \times \text { height }
$$

Composite Shapes - Area and Perimeter


First find unknown lengths

$$
\begin{aligned}
\text { Perimeter } & =3+8+4+2+7+10 \\
& =34 \mathrm{~m}
\end{aligned}
$$

(a)


$$
\begin{aligned}
& A=10 \times 3=30 \\
& B=4 \times 2=\frac{8}{38} \mathrm{~m}^{2}
\end{aligned}
$$

bb)

lc)


$$
\begin{aligned}
& C=8 \times 3=24 \\
& D=7 \times 2=14 \\
& \text { Total Area }=38 \mathrm{~m}^{2}
\end{aligned}
$$

Area of $L$ shape = Area of la ge rectangle

- Area of small rectangle

Large Rect $10 \times 7=70$
Small Rect $8 \times 4=\frac{32}{38} \mathrm{~m}^{2}$
$L$ Shape
2)


Perimeter

$$
\begin{aligned}
& 3+4+3+4+3+10+3+4+3+4+3+10 \\
& =54 \mathrm{~m}
\end{aligned}
$$

Area

$$
\begin{aligned}
& C=10 \times 3=30 \\
& D=10 \times 3=30 \\
& E=3 \times 2=\frac{6}{66 \mathrm{~m}^{2}}
\end{aligned}
$$

