(ii) Find F.

1 The position vector, \mathbf{r} , of a particle of mass 4 kg at time t is given by

$$\mathbf{r} = t^2 \mathbf{i} + (5t - 2t^2) \mathbf{j}.$$

where i and j are the standard unit vectors, lengths are in metres and time is in seconds.

(i) Find an expression for the acceleration of the particle.

[4]

The particle is subject to a force F and a force 12 j N.

[3]

5 The position vector of a particle at time t is given by

Jun 05

Jan 05

$$\mathbf{r} = \frac{1}{2}t\mathbf{i} + (t^2 - 1)\mathbf{j},$$

referred to an origin O where \mathbf{i} and \mathbf{j} are the standard unit vectors in the directions of the cartesian axes Ox and Oy respectively.

- (i) Write down the value of t for which the x-coordinate of the position of the particle is 2. Find the y-coordinate at this time. [2]
- (ii) Show that the cartesian equation of the path of the particle is $y = 4x^2 1$. [2]

Jun 06

4

4 Fig. 4 shows the unit vectors **i** and **j** in the directions of the cartesian axes Ox and Oy, respectively. O is the origin of the axes and of position vectors.

Fig. 4

The position vector of a particle is given by $\mathbf{r} = 3t\mathbf{i} + (18t^2 - 1)\mathbf{j}$ for $t \ge 0$, where t is time.

(i) Show that the path of the particle cuts the x-axis just once.

[2]

(ii) Find an expression for the velocity of the particle at time t.

Deduce that the particle never travels in the j direction.

[3]

(iii) Find the cartesian equation of the path of the particle, simplifying your answer.

[3]

$$\mathbf{v} = \begin{pmatrix} -5 \\ 10 \end{pmatrix} + t \begin{pmatrix} 6 \\ -8 \end{pmatrix},$$

where t is the time in seconds and the vectors $\begin{pmatrix} 1 \\ 0 \end{pmatrix}$ and $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$ are east and north respectively.

(i) Show that when t = 2.5 the boat is travelling south-east (i.e. on a bearing of 135°). Calculate its speed at this time. [3]

The boat is at a point O when t = 0.

(ii) Calculate the bearing of the boat from O when t = 2.5.

Jun 07

[4]

A rock of mass 8 kg is acted on by just the two forces -80k N and (-i + 16j + 72k) N, where i and j are perpendicular unit vectors in a horizontal plane and k is a unit vector vertically upward.

(i) Show that the acceleration of the rock is
$$\left(-\frac{1}{8}\mathbf{i} + 2\mathbf{j} - \mathbf{k}\right) \text{ms}^{-2}$$
. [2]

The rock passes through the origin of position vectors, O, with velocity $(\mathbf{i} - 4\mathbf{j} + 3\mathbf{k})$ m s⁻¹ and 4 seconds later passes through the point A.

(iv) Find the angle that OA makes with the horizontal. [2]

Jan 08

2 The force acting on a particle of mass 1.5 kg is given by the vector $\binom{6}{9}$ N.

(i) Give the acceleration of the particle as a vector. [2]

(ii) Calculate the angle that the acceleration makes with the direction
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix}$$
. [2]

(iii) At a certain point of its motion, the particle has a velocity of $\binom{-2}{3}$ m s⁻¹. Calculate the displacement of the particle over the next two seconds. [3]

Jun 08

[3]

3 An object of mass 5 kg has a constant acceleration of $\binom{-1}{2}$ m s⁻² for $0 \le t \le 4$, where t is the time in seconds.

When t = 0, the object has position vector $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$ m and velocity $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ m s⁻¹.

(ii) Find the position vector of the object when t = 4.

A toy boat moves in a horizontal plane with position vector $\mathbf{r} = x\mathbf{i} + y\mathbf{j}$, where \mathbf{i} and \mathbf{j} are the standard unit vectors east and north respectively. The origin of the position vectors is at O. The displacements x and y are in metres.

First consider only the motion of the boat parallel to the x-axis. For this motion

$$x = 8t - 2t^2.$$

The velocity of the boat in the x-direction is $v_r \, \text{m s}^{-1}$.

(i) Find an expression in terms of t for v_x and determine when the boat instantaneously has zero speed in the x-direction. [3]

Now consider only the motion of the boat parallel to the y-axis. For this motion

$$v_v = (t-2)(3t-2),$$

where $v_y \text{ m s}^{-1}$ is the velocity of the boat in the y-direction at time t seconds.

(ii) Given that y = 3 when t = 1, use integration to show that $y = t^3 - 4t^2 + 4t + 2$. [4]

The position vector of the boat is given in terms of t by $\mathbf{r} = (8t - 2t^2)\mathbf{i} + (t^3 - 4t^2 + 4t + 2)\mathbf{j}$.

- (iii) Find the time(s) when the boat is due north of O and also the distance of the boat from O at any such times.[4]
- (iv) Find the time(s) when the boat is instantaneously at rest. Find the distance of the boat from O at any such times. [5]
- (v) Plot a graph of the path of the boat for $0 \le t \le 2$. [3]

Jun 09

- The position vector of a toy boat of mass 1.5 kg is modelled as $\mathbf{r} = (2+t)\mathbf{i} + (3t-t^2)\mathbf{j}$ where lengths are in metres, t is the time in seconds, \mathbf{i} and \mathbf{j} are horizontal, perpendicular unit vectors and the origin is O.
 - (i) Find the velocity of the boat when t = 4. [3]
 - (ii) Find the acceleration of the boat and the horizontal force acting on the boat. [3]
 - (iii) Find the cartesian equation of the path of the boat referred to x- and y-axes in the directions of i and j, respectively, with origin O. You are not required to simplify your answer. [2]

Jan 10

- A particle of mass 5 kg has constant acceleration. Initially, the particle is at $\binom{-1}{2}$ m with velocity $\binom{2}{-3}$ m s⁻¹; after 4 seconds the particle has velocity $\binom{12}{9}$ m s⁻¹.
 - (i) Calculate the acceleration of the particle. [2]
 - (ii) Calculate the position of the particle at the end of the 4 seconds. [3]
 - (iii) Calculate the force acting on the particle. [2]