Gradients at points on a curve

Questions

Q1.

Draw a tangent to the curve at the required point and find gradient of tangent

The graph shows information about the velocity, v m/s, of a parachutist t seconds after leaving a plane.

(a) Work out an estimate for the acceleration of the parachutist at t = 6

$$acc = gradient = (\frac{53.5 - 30}{(8 - 2)}) = 3.9 \text{ m/s}^2$$

$$= 3.9 \text{ m/s}^2$$
(2)

(b) Work out an estimate for the distance fallen by the parachutist in the first 12 seconds after leaving the plane. Use 3 strips of equal width.

 	 r	n										
											10	٥١

Q2.

Karol runs in a race.

The graph shows her speed, in metres per second, *t* seconds after the start of the race.

gradient =
$$\frac{10-4}{6-0}$$

$$= \frac{6}{6}$$

(a) Calculate an estimate for the gradient of the graph when t = 4 You must show how you get your answer.

 $\frac{1}{m/s^2}$

(b) Describe fully what your answer to part (a) represents.

The instantaneous acceleration when t = 4 s

(2)

(c) Explain why your answer to part (a) is only an estimate.

Difficult to draw tangent accurately

(1)