Questions

Q1.

*

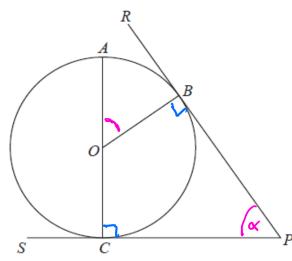


Diagram NOT accurately drawn

Let LCPB = a LPCO = LPBO = 90° (tangent-radius)

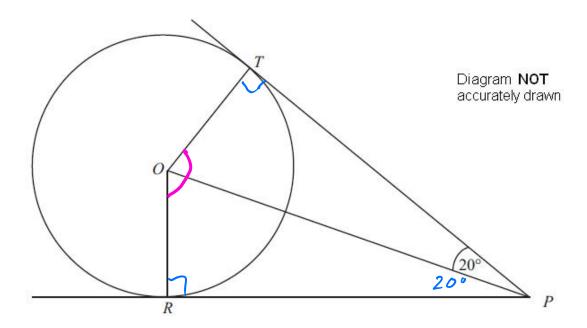
A, B and C are points on a circle, centre O.

RBP is the tangent to the circle at B. SCP is the tangent to the circle at C. AOC is a diameter of the circle.

Prove that angle *AOB* is equal to angle *CPB*. You must give reasons at each stage.

 $2 \cos = 360 - 90 - 90 - d$ = 180 - d (2 som of grad)

L AOB = 180 - 4 COB


(Total for question = 5 marks)

(Angles on straight line) $180 - (180 - \alpha) = \alpha$

. LAOB = LCPB

Q2.

*

Tand Rare two points on a circle centre O.

PTand PRare the tangents to the circle from P.

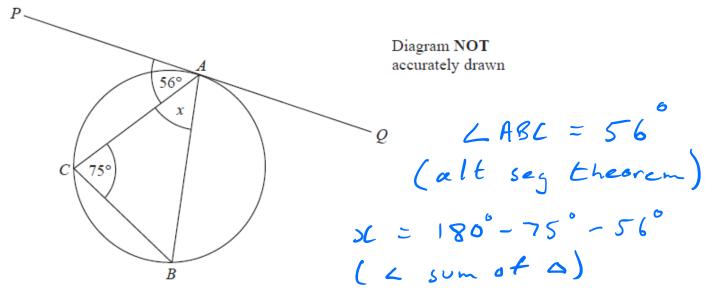
Angle TPO= 20°.

Work out the size of angle TOR.

You must give reasons for each stage of your working.

$$\angle PRO = \angle PTO = 90^{\circ}$$
 (tangent radius)

 $\angle RPO = 20^{\circ}$ (symmetry or congruent $\triangle s$)


 $\angle TOR = 360 - 90 - 90 - 40$

($\angle Sum of guad$)

 $\angle TOR = 140^{\circ}$

(Total for Question is 4 marks)

Q3.

A, B and C are points on the circumference of a circle.

The straight line PAQ is a tangent to the circle.

Angle $PAC = 56^{\circ}$

Angle $ACB = 75^{\circ}$

$$x = 49^6$$

Work out the size of the angle marked x. Give reasons for each stage of your working.

(Total for question = 3 marks)

Q4.

*

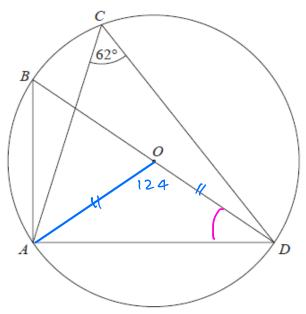
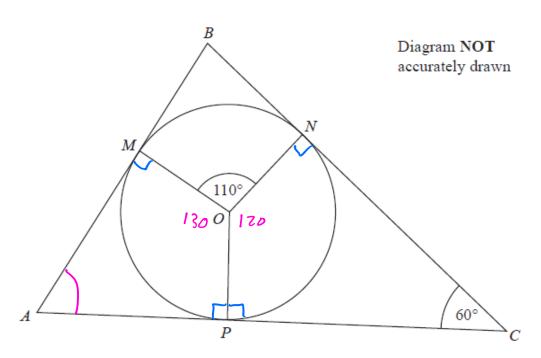


Diagram NOT accurately drawn

 $\angle AOB = 124^{\circ}$ ($\angle at centre$ $twice \angle at circ$) $\angle ADB = 180 - 124$ ($base \angle s \circ t \cdot s \circ s \circ o$)

A, B, C and D are points on the circumference of a circle, centre O. BOD is a straight line.


Angle $ACD = 62^{\circ}$

LADB = 28°

(Total for question = 4 marks)

Q5.

*

M, N and P are points on the circumference of a circle, centre O. AMB, BNC, and CPA are tangents to the circle.

Angle
$$MON = 110^{\circ}$$

Angle $BCA = 60^{\circ}$

Work out the size of angle BAC.

Give reasons for each stage of your working.

$$\angle PON = 360-90-90-60=120^{\circ}$$
 (= sum of quad)
(Total for question = 4 marks)

 $\angle MOP = 360-110-120=130^{\circ}$ (\alpha s at a point)

 $\angle BAC = 360-90-90-130=50^{\circ}$ (\alpha sum of quad)

 $\angle BAC = 50^{\circ}$