Show x - 2x2 - 4 = 0 has a root between x = 2 and x = 3 $2^{3} - 2(2)^{2} - 4 = 8 - 8 - 4 = -4 < 0$ $3^{3} - 2(3)^{2} - 4 = 27 - 18 - 4 = +5 > 0$ Sign change between x = 2 and x = 3function continuous so a root between 2 and 3 Rearrange $x^3 - 2x^2 - 4 = 0$ to give a formula for x $3x^{3} = 2x^{2} + 4$ Attempt 1 $\alpha = 3\sqrt{2x^2+4}$ $\mathcal{X}^3 - 4 = Z x^2$ Attempt 2 $\frac{2c^3-4}{2} = x^2$ $\sqrt{\frac{x^2-4}{2}} = x$ $\chi_{n+1} = 3/2 \chi_n^2 + 4$ Let x = 2 Let $21 = 3\sqrt{2 \times 2^2 + 4} = 2.289$ $\chi_2 = \frac{3}{2 \times 2.284^2 + 4}$ = 2.437 = 2.513

 $2C_3 = 3/2 \times 2.437^2 + 4$

Let
$$x_{n+1} = \sqrt{\frac{x_n^2 - 4}{2}}$$
 Let $x_0 = 3$
 $x_1 = \sqrt{\frac{3^2 - 4}{2}} = 1.581$
 $x_2 = \sqrt{\frac{1.581^2 - 4}{2}}$ X

Exercise
$$x^3 - x - 4 = 0$$

i) Show there is a root between
$$x = 1$$
 and $x = 2$
ii) Rearrange to form iterative formula
iii) Starting $x_0=1$, find x_1, x_2, x_3
 $1^3 - 1 - 4 = -4$
 $2^3 - 2 - 4 = +2$

Sign change between x = 1 and x = 2 continuous function so root between x = 1 and x = 2

$$\chi^{3} = \chi + 4$$

$$\chi = 3\sqrt{2t+4}$$

$$\chi_{n+1} = 3\sqrt{2t+4}$$

$$\chi_{0} = 1$$

$$\chi_{1} = 3\sqrt{1+4} = 1.710$$

$$\chi_{2} = 3\sqrt{1.710+4} = 1.787$$

$$\chi_{3} = 3\sqrt{1.78744} = 1.795$$