Show $x^{3}-2 x^{2}-4=0$
has a root between $x=2$ and $x=3$

$$
\begin{aligned}
& 2^{3}-2(2)^{2}-4=8-8-4=-4<0 \\
& 3^{3}-2(3)^{2}-4=27-18-4=+5>0
\end{aligned}
$$

Sign change between $x=2$ and $x=3$
function continuous so a root between 2 and 3
Rearrange $x^{3}-2 x^{2}-4=0$
to give a formula for x
Attempt 1

$$
\begin{aligned}
& x^{3}=2 x^{2}+4 \\
& x=\sqrt[3]{2 x^{2}+4}
\end{aligned}
$$

Attempt 2

$$
\begin{aligned}
& x^{3}-4=2 x^{2} \\
& \frac{x^{3}-4}{2}=x^{2} \\
& \sqrt{\frac{x^{2}-4}{2}}=x
\end{aligned}
$$

Let

$$
\begin{aligned}
& x_{n+1}=\sqrt[3]{2 x_{n}^{2}+4} \quad \quad \text { Let } x_{0}=2 \\
& x_{1}=\sqrt[3]{2 \times 2^{2}+4}=2.289 \\
& x_{2}=\sqrt[3]{2 \times 2.284^{2}+4}=2.437 \\
& x_{3}=\sqrt[3]{2 \times 2.437^{2}+4}=2.513
\end{aligned}
$$

$$
\text { Let } \begin{aligned}
x_{n+1} & =\sqrt{\frac{x_{n}^{2}-4}{2}} \quad \text { Let } x_{0}=3 \\
x_{1} & =\sqrt{\frac{3^{2}-4}{2}}=1.581 \\
x_{2} & =\sqrt{\frac{1.581^{2}-4}{2}} \quad X
\end{aligned}
$$

Exercise $\quad x^{3}-x-4=0$
i) Show there is a root between $x=1$ and $x=2$
ii) Rearrange to form iterative formula
iii) Starting $x_{0}=1$, find x_{1}, x_{2}, x_{3}

$$
\begin{aligned}
& 1^{3}-1-4=-4 \\
& 2^{3}-2-4=+2
\end{aligned}
$$

Sign change between $x=1$ and $x=2$
continuous function so root between $x=1$ and $x=2$

$$
\begin{aligned}
& x^{3}=x+4 \\
& x=\sqrt[3]{x+4} \\
& x_{n+1}=\sqrt[3]{x_{n}+4} \quad x_{0}=1 \\
& x_{1}=\sqrt[3]{1+4}=1.710 \\
& x_{2}=\sqrt[3]{1.710+4}=1.787 \\
& x_{3}=\sqrt[3]{1.287+4}=1.795
\end{aligned}
$$

