Binomial Within the Binomial
Suppose you spin a coin 10 times, what is prob you get at least 7 heads?

$$
\begin{aligned}
& x \sim B\left(10, \frac{1}{2}\right) \\
& \begin{aligned}
P(x \geqslant 7) & =1-P(x \leq 6) \\
& =1-0.8281 \\
& =0.1719
\end{aligned}
\end{aligned}
$$

Suppose 5 people each carried out this experiment. what is the probability at least 3 of them got at least 7 heads?

$$
\begin{aligned}
y & \sim B\left({ }^{n}, 0.1719\right) \\
P(y \geqslant 3) & =1-P(y \leq 2) \\
& =1-0.9614 \\
& =0-0386
\end{aligned}
$$

Approximating Binomial With Normal Distribution
Spin a fair coin 100 times. Find probability that you get between 45 and 55 heads inclusive

Binomial

$$
\begin{aligned}
& X-B(100,0.5) \\
& P(45 \leq x \leq 55) \\
& =P(x \leq 55)-P(x \leq 44)
\end{aligned}
$$

$$
\begin{aligned}
& =0.8643-0.1356 \\
& =0.7287 \\
& \text { Approximate With Normal } \\
& x \sim B(100,0.5) \\
& E(x)=n_{p}=100 \times 0.5 \\
& =50 \\
& \operatorname{Var}(x)=n p q \\
& \text { Approximate with } \\
& =100 \times 0.5 \times 0.5 \\
& =25 \\
& P(45 \leqslant x \leqslant 55) \approx P(44.5 \leqslant Y \leqslant 55.5)=0.7287
\end{aligned}
$$

5
7 A geologist splits rocks to look for fossils. On average 10% of the rocks selected from a particular area do in fact contain fossils.

The geologist selects a random sample of 20 rocks from this area.
(i) Find the probability that
(A) exactly one of the rocks contains fossils,
(B) at least one of the rocks contains fossils.
(ii) A random sample of n rocks is selected from this area. The geologist wants to have a probability of 0.8 or greater of finding fossils in at least one of the n rocks. Find the least possible value of n.
(iii) The geologist explores a new area in which it is claimed that less than 10% of rocks contain fossils. In order to investigate the claim, a random sample of 30 rocks from this area is selected, and the number which contain fossils is recorded. A hypothesis test is carried out at the 5% level.
(A) Write down suitable hypotheses for the test.
(B) Show that the critical region consists only of the value 0 .
(C) In fact, 2 of the 30 rocks in the sample contain fossils. Complete the test, stating your conclusions clearly.
i) $\quad X \sim B\left(2^{n}, 0_{0}^{p} .1\right)$
A) $P(x=1)=0.2702$
B)

$$
\begin{aligned}
P(x \geq 1)=1-P(x=0) & =1-0.9^{20} \\
& =0.8784
\end{aligned}
$$

ii)

$$
\begin{array}{ll}
N=18 & P(x \geqslant 1)=1-0.9^{18}=0.8499 \\
N=16 & P(x \geqslant 1)=1-0.9^{16}=0.8147 \\
N=15 & P(x \geqslant 1)=1-0.9^{15}=0.7941 \\
\text { Least } n=16
\end{array}
$$

iii) $H_{0}: p=0.1$
A) $H_{1}: p<0.1$
where ρ is prob radon rots contains a fossil

$$
\begin{aligned}
& P(x=0)=0.0423<5 \% \\
& P(x \leq 1)=0.1836>5 \%
\end{aligned}
$$

B) $5 \% \quad \therefore 0$ is only value in critical region
c) 2 is not in crotionl regrom so accept Ho

There is not sufficient evidence to support the view the proportion of rocks containing fossils has reduced. Accept it is still 10%

