3 varies inversely with (5-t). If $Q=8$ when $t=3$, find the following.
a Q when $t=10$
b t when $Q=16$
$4 M$ varies inversely with t^{2}. If $M=9$ when $t=2$, find the following.
a M when $t=3$
b t when $M=1.44$

5 is inversely proportional to \sqrt{T}. If $W=6$ when $T=16$, find the following.
a W when $T=25$
b T when $W=2.4$

6 The grant available to a section of society was inversely proportional to the number of people needing the grant. When 30 people needed a grant, they received $£ 60$ each.
a What would the grant have been if 120 people had needed one?
b If the grant had been $£ 50$ each, how many people would have received it?
1 While doing underwater tests in one part of an ocean, a team of scientists noticed that the temperature in ${ }^{\circ} \mathrm{C}$ was inversely proportional to the depth in kilometres. When the temperature was $6^{\circ} \mathrm{C}$, the scientists were at a depth of 4 km .
a What would the temperature have been at a depth of 8 km ?
b To what depth would they have had to go to find the temperature at $2^{\circ} \mathrm{C}$?
8 A new engine was being tested, but it had serious problems. The distance it went, in km, without breaking down was inversely proportional to the square of its speed in m / s. When the speed was $12 \mathrm{~m} / \mathrm{s}$, the engine lasted 3 km .
a Find the distance covered before a breakdown, when the speed is $15 \mathrm{~m} / \mathrm{s}$.
b On one test, the engine broke down after 6.75 km . What was the speed?
In a balloon it was noticed that the pressure, in atmospheres, was inversely proportional to the square root of the height, in metres. When the balloon was at a height of 25 m , the pressure was 1.44 atm .
a What was the pressure at a height of 9 m ?
b What would the height have been if the pressure was 0.72 atm ?
10 The amount of waste which a firm produces, measured in tonnes per hour, is inversely proportional to the square root of the size of the filter beds, measured in m^{2}. At the moment, the firm produces 1.25 tonnes per hour of waste, with filter beds of size $0.16 \mathrm{~m}^{2}$.
a The filter beds used to be only $0.01 \mathrm{~m}^{2}$. How much waste did the firm produce then?
b How much waste could be produced if the filter beds were $0.75 \mathrm{~m}^{2}$?

The grant available to a section of society was inversely proportional to the number of people needing the grant. When 30 people needed a grant, they received $£ 60$ each.
a What would the grant have been if 120 people had needed one?
b If the grant had been $£ 50$ each, how many people would have received it?
Let P be number of people
Let G be size of grant

$$
\begin{aligned}
G & =\frac{k}{p} & G=30 \\
60 & =\frac{k}{30} & G=t 60 \\
60 \times 30 & =k & \\
1800 & =k &
\end{aligned}
$$

a) When $P=120 \quad G=\frac{1800}{120}=15$

$$
\text { Grant }=415
$$

b) When $G=\neq 50$

$$
\begin{aligned}
& 50=\frac{1800}{p} \\
& 50 p=1800 \\
& p=\frac{1800}{50} \\
& p=36 \\
& 36 \text { people }
\end{aligned}
$$

3 varies inversely with ($5-t$). If $Q=8$ when $t=3$, find the following.
a Q when $t=10$

$$
\begin{aligned}
& Q=\frac{k}{5-t} \\
& 8=\frac{k}{5-3} \\
& 8=\frac{k}{2} \\
& 16=k
\end{aligned}
$$

a) When $t=10$

$$
\begin{aligned}
& Q=\frac{16}{5-10} \\
& Q=\frac{16}{-5} \\
& Q=-3.2
\end{aligned}
$$

b t when $Q=16$

$$
\begin{aligned}
& \left\{\begin{array}{l}
Q=8 \\
t=3
\end{array}\right. \\
& Q=\frac{16}{5-t}
\end{aligned}
$$

b) When $Q=16$

$$
\begin{aligned}
16 & =\frac{16}{(5-t)} \\
16(5-t) & =16 \\
5-t & =\frac{16}{16} \\
5-t & =1 \\
t & =4
\end{aligned}
$$

5 (5) W is inversely proportional to \sqrt{T}. If $W=6$ when $T=16$, find the following.
a W when $T=25$
b T when $W=2.4$

$$
W=\frac{K}{\sqrt{T}}
$$

$$
\left\{\begin{array}{l}
W=6 \\
T=16
\end{array}\right.
$$

$$
\begin{aligned}
6 & =\frac{k}{\sqrt{16}} \\
6 & =\frac{k}{4} \\
24 & =k
\end{aligned} \quad W=\frac{24}{\sqrt{T}}
$$

a) when $T=25$

$$
\begin{aligned}
& W=\frac{24}{\sqrt{25}} \\
& w=\frac{24}{5} \\
& w=4.8
\end{aligned}
$$

A new engine was being tested, but it had serious problems. The distance it went, in km , without breaking down was inversely proportional to the square of its speed in m / s. When the speed was $12 \mathrm{~m} / \mathrm{s}$, the engine lasted 3 km .
a Find the distance covered before a breakdown, when the speed is $15 \mathrm{~m} / \mathrm{s}$.
b On one test, the engine broke down after 6.75 km . What was the speed?

$$
\begin{array}{rlrl}
\text { Distance } & \begin{array}{ll}
D & \text { Speed }
\end{array} & V \\
D & =\frac{K}{V^{2}} & \left\{\begin{array}{l}
D=3 \\
V
\end{array}\right. \\
3 & =\frac{K}{12^{2}} & D & =\frac{432}{V^{2}}
\end{array}
$$

$$
432=\mathrm{T}
$$

a) When $v=15$
b) when $D=6.75$

$$
\begin{aligned}
& D=\frac{432}{152} \\
& D=\frac{432}{225} \\
& D=1.92 \mathrm{~km}
\end{aligned}
$$

$$
\begin{aligned}
6.75 & =\frac{432}{v^{2}} \\
6.75 v^{2} & =432 \\
v^{2} & =\frac{432}{6.75} \\
v & =\sqrt{\frac{432}{6.75}} \\
v & =8 \mathrm{~ms}^{-1}
\end{aligned}
$$

The amount of waste which a firm produces, measured in tonnes per hour, is inversely proportional to the square root of the size of the filter beds, measured in m^{2}. At the moment, the firm produces 1.25 tonnes per hour of waste, with filter beds of size $0.16 \mathrm{~m}^{2}$.
a The filter beds used to be only $0.01 \mathrm{~m}^{2}$. How much waste did the firm produce then?
b How much waste could be produced if the filter beds were $0.75 \mathrm{~m}^{2}$?
Weight W Filter bad area A

$$
\begin{aligned}
W & =\frac{K}{\sqrt{A}} \\
1.25 & =\frac{K}{\sqrt{0.16}} \\
1.25 & =\frac{K}{0.4} \\
1.25 \times 0.4 & =k \\
0.5 & =K
\end{aligned}
$$

$$
w=1.25 \text { tonnes }
$$

$$
A=0.16 \mathrm{~m}^{2}
$$

$$
W=\frac{0.5}{\sqrt{A}}
$$

a) When $A=0.01 \mathrm{~m}^{2}$

$$
w=\frac{0.5}{\sqrt{0.01}}=\frac{0.5}{0.1}=5 \text { tonnes }
$$

b)

$$
\text { When } A=0.75 m^{2} \quad \begin{aligned}
W & =\frac{0.5}{\sqrt{0.75}} \\
W & =0.577 \text { tonnes }
\end{aligned}
$$

$14 y$ is inversely proportional to d^{2} When $d=10, y=4$
d is directly proportional to x^{2} When $x=2, d=24$

Find a formula for y in terms of x. Give your answer in its simplest form.

$$
\begin{array}{ll}
y=\frac{k}{d^{2}} & \begin{array}{l}
d=10 \\
y
\end{array} \\
4=\frac{k}{10^{2}} & y=\frac{400}{d^{2}} \\
400=k & x=2 \\
d=c x^{2} & d=24 \\
24=c \times 2^{2} & y=c \\
\frac{d}{4}=c & y=\frac{400}{d^{2}} \\
6=c & y=\frac{400}{\left(6 x^{2}\right)^{2}} \\
y & y=\frac{400}{36 x^{4}} \\
y & y=\frac{100}{9 x^{4}}
\end{array}
$$

