Independent Events
Events A and B are independent when the fact that one of them occurs does not affect the probability occurs.
For independent events A and B

$$
P(A \cap B)=P(A) \times P(B)
$$

This is called the 'And' rule
Let A be get a Head spinning a coin
Example
Let B be get a 4 rolling a dice

$$
\begin{aligned}
& P(A)=\frac{1}{2} \quad P(B)=\frac{1}{6} \\
& P(A \cap B)=\frac{1}{2} \times \frac{1}{6}=\frac{1}{12}
\end{aligned}
$$

See where this comes from

H_{1}	$T 1$	12 equally likely outcomes	
H_{2}	$\mathrm{~T}_{2}$		
H_{3}	T 3		
H 4	T_{4}	so $P\left(\mathrm{H}_{4}\right)=\frac{1}{12}$	
H_{5}	$T 5$		
$H 6$	$T 6$		

Pack of Cards (Facts)
52 cards 4 suits Heart, Diamond, Spade, Club 2 colours Red Red Black Black
Each suit 13 cards $A, 2,3,4,5,6,7,8,9,10, J, Q, K$

Examples Pick card at random

$$
\begin{aligned}
& P(\text { Heart })=\frac{13}{52}=\frac{1}{4} \\
& P(\text { Rel })=\frac{26}{52}=\frac{1}{2} \\
& P(\text { Queen })=\frac{4}{52}=\frac{1}{13}
\end{aligned}
$$

Let A be event pick Queen
Let B be evert pick Spade

$$
P(A)=\frac{1}{13} \quad P(B)=\frac{1}{4}
$$

$P($ Queen and spade $)=P(A \cap B)=\frac{1}{13} \times \frac{1}{4}=\frac{1}{52}$

$$
P(A) \times P(B)=\frac{1}{13} \times \frac{1}{4}=\frac{1}{52}
$$

Let C be event pick Rel card
Let D be event pick Heart

$$
P(c)=\frac{1}{2} \quad P(D)=\frac{1}{4}
$$

These affect each other - they are not inleperleut $P(C \cap D)=\frac{1}{4}$
but $P(C) \times P(0)=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$
This is the test for independence
A, B are independent if $P(A) \times P(B)=P(A \cap B)$

Spin a coin 3 times - what is Prob (HHH)

$$
\begin{array}{lc}
\text { HHH } & P(H H H)=\frac{1}{8} \\
H H T & \text { Each spin is independent } \\
\text { HTH } & \text { So } P(H \cap H \cap H) \\
\text { TH } & =P(H) \times P(H) \times P(H) \\
\text { TH } & =\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{8}
\end{array}
$$

$$
\begin{array}{lll}
P(2 H, 1 T)=\frac{3}{8} & & \text { Notice outcomes } \\
P(1 H, 2 T) & =\frac{3}{8} & \\
\text { are not equally }
\end{array}
$$

