Roots of Polynomials and Standard Series - **4** Use standard series formulae to find $\sum_{r=1}^{n} r(r^2 + 1)$, factorising your answer as far as possible. [6] - The roots of the cubic equation 2x³ 3x² + x 4 = 0 are α, β and γ. Find the cubic equation whose roots are 2α + 1, 2β + 1 and 2γ + 1, expressing your answer in a form with integer coefficients. - The roots of the cubic equation $x^3 + 3x^2 7x + 1 = 0$ are α , β and γ . Find the cubic equation whose roots are 3α , 3β and 3γ , expressing your answer in a form with integer coefficients. [6] - 4 Using the standard formulae for $\sum_{r=1}^{n} r$ and $\sum_{r=1}^{n} r^2$, show that $\sum_{r=1}^{n} [(r+1)(r-2)] = \frac{1}{3}n(n^2-7)$. [6] $$\alpha + \beta + \gamma = 3,$$ $$\alpha\beta\gamma = -7,$$ $$\alpha^2 + \beta^2 + \gamma^2 = 13.$$ - (i) Write down the values of p and r. - (ii) Find the value of q. [3] - The roots of the cubic equation $2x^3 + x^2 3x + 1 = 0$ are α , β and γ . Find the cubic equation whose roots are 2α , 2β and 2γ , expressing your answer in a form with integer coefficients. [5] - Q 7 10 (i) Using the standard formulae for $\sum_{r=1}^{n} r^2$ and $\sum_{r=1}^{n} r^3$, prove that $$\sum_{r=1}^{n} r^{2}(r+1) = \frac{1}{12}n(n+1)(n+2)(3n+1).$$ [5] [2]