EXERCISE AD

(4) For each prism shown
i sketch the cross-section
iii calculate the volume.

b

c

(3) Calculate the volume of each of these prisms.

b

c

3 The uniform cross-section of a swimming pool is a trapezium with parallel sides, 1 m and 2.5 m , with a perpendicular distance of 30 m between them. The width of the pool is 10 m . How much water is in the pool when it is full? Give your answer in litres.

4 A lean-to is a prism. Calculate the volume of air inside the lean-to with the dimensions shown in the diagram. Give your answer in litres.

3 Each of these prisms has a regular cross-section in the shape of a right-angled triangle.
a Find the volume of each prism.
b Find the total surface area of each prism.

Homework for Friday 4 March
Q3, Q4, Q5 in small homework books:

3 The uniform cross-section of a swimming pool is a trapezium with parallel sides, 1 m and 2.5 m , with a perpendicular distance of 30 m between them. The width of the pool is 10 m . How much water is in the pool when it is full? Give your answer in litres.

$$
\begin{aligned}
1 \mathrm{~m} \quad \begin{aligned}
& 30 \mathrm{~m} \\
& \text { Area }=\frac{1}{2}(1+2.5) \times 30 \\
&=52.5 \mathrm{~m}^{2} \\
& \text { Volume }=52.5 \times 10=525 \mathrm{~m}^{3} \\
& 1 \text { metre }^{3}=1000 \text { litres }
\end{aligned}
\end{aligned}
$$

Water in pool 525,000 litres

A lean-to is a prism. Calculate the volume of air inside the lean-to with the dimensions shown in the diagram. Give your answer in litres.

$$
\begin{aligned}
\text { Volume } & =\frac{1}{2}(1.5+3) \times 1.7 \times 2 \\
& =7.65 \mathrm{~m}^{3} \\
& =7.65 \times 1000 \text { litres } \\
& =7,650 \text { litres }
\end{aligned}
$$

Each of these prisms has a regular cross-section in the shape of a right-angled triangle.
a Find the volume of each prism.
b Find the total surface area of each prism.

a) Area of cross-section

$$
\begin{aligned}
& =\frac{1}{2} \times 3 \times 4 \\
& =6 \mathrm{~cm}^{2} \\
\text { Volume } & =6 \times 3.5 \\
& =21 \mathrm{~cm}^{3}
\end{aligned}
$$

Surface area

$$
\begin{aligned}
& =2 \text { triangles }+3 \text { rectangles } \\
& \begin{aligned}
& 2\left(\frac{3 \times 4}{2}\right)+3.5 \times 3 \\
&+3.5 \times 4 \\
&+3.5 \times 5 \\
&=54 \mathrm{~cm}^{2}
\end{aligned}
\end{aligned}
$$

Area of cross-section

$$
\begin{aligned}
& =\frac{1}{2} \times 12 \times 5 \\
& =30 \mathrm{~cm}^{2} \\
& \begin{aligned}
\text { Volume } & =30 \times 7 \\
& =210 \mathrm{~cm}^{3}
\end{aligned}
\end{aligned}
$$

Surface area

$$
\begin{aligned}
& =2 \text { triangles }+3 \text { rectangles } \\
& \begin{aligned}
2\left(\frac{5 \times 12}{2}\right) & +7 \times 5 \\
& +7 \times 12 \\
& +7 \times 13
\end{aligned} \\
& =270 \mathrm{~cm}^{2}
\end{aligned}
$$

