

- For each prism shown
 - i sketch the cross-section
- ii calculate the area of the cross-section

iii calculate the volume.

Calculate the volume of each of these prisms.

- The uniform cross-section of a swimming pool is a trapezium with parallel sides, 1 m and 2.5 m, with a perpendicular distance of 30 m between them. The width of the pool is 10 m. How much water is in the pool when it is full? Give your answer in litres.
- A lean-to is a prism. Calculate the volume of air inside the lean-to with the dimensions shown in the diagram. Give your answer in litres.

- Each of these prisms has a regular cross-section in the shape of a right-angled triangle.
- Find the volume of each prism. **b** Find the total surface area of each prism.

The uniform cross-section of a swimming pool is a trapezium with parallel sides, 1 m and 2.5 m, with a perpendicular distance of 30 m between them. The width of the pool is 10 m. How much water is in the pool when it is full? Give your answer in litres.

In Area =
$$\frac{1}{2}(1+2.5) \times 30$$

= 52.5 m^2
Volume = $52.5 \times 10 = 525 \text{ m}^3$
I metre³ = 1000 litres
Water in pool 525,000 litres

A lean-to is a prism. Calculate the volume of air inside the lean-to with the dimensions shown in the diagram. Give your answer in litres.

Volume =
$$\frac{1.5 + 3}{2} \times 1.7 \times 2$$

= 7.65 m³
= 7.65 x 1000 litres
= 7,650 litres

- Each of these prisms has a regular cross-section in the shape of a right-angled triangle.

 - a Find the volume of each prism. b Find the total surface area of each prism.

a) Area of cross-section
$$= \frac{1}{2} \times 3 \times 4$$

$$= 6 \text{ cm}^2$$

Volune =
$$6 \times 3.5$$

= 21 cm^3

= 2 Eriangles + 3 rectangles

$$2\left(\frac{3\times4}{2}\right) + 3.5 \times 3 + 3.5 \times 4 + 3.5 \times 5$$

Area of cross-section = $\frac{1}{2} \times 12 \times 5$ = 30 cm^2 Volume = 30×7

$$Volume = 30 \times 7$$
$$= 210 \text{ cm}^3$$

Surface area = 2 Eriangles + 3 rectangles

$$2\left(\frac{5\times n}{2}\right) + 7\times 5 + 7\times 12 + 7\times 13$$