

Coefficient of friction

$$
\begin{aligned}
& \mu=\frac{1}{2} \\
& F \leq \mu R
\end{aligned}
$$

Find T and a

N2LforA $3 a-T=3 a$

$$
\text { Fos } \begin{array}{rl}
T-F & T-2 a \\
& T-\mu R=2 a \\
T-\frac{1}{2} \times 2 g=2 a \\
T-g=2 a \tag{2}
\end{array}
$$

(1) +2

$$
\begin{aligned}
3 g-g & =5 a \\
a & =\frac{2}{5} g \quad \mathrm{~ms}^{-2}
\end{aligned}
$$

Sub in (2)

$$
\begin{aligned}
& T-g=2 \times \frac{2}{5} 9 \\
& T=\frac{9}{5} g \quad N
\end{aligned}
$$

Friction on an inclined plane

of incline to
horizontal

Weight component parallel to slope

$$
=m g \sin \theta
$$

Weight component perpendicular to slope

$$
=m g \cos \theta
$$

Suppose block is on the point of slipping

$$
\text { then } F=\mu R=\mu m g \cos \theta
$$

On point of slipping $m g \sin \theta=F$

$$
\begin{aligned}
\therefore \quad m g \sin \theta & =\mu m g \cos \theta \\
\frac{m g \sin \theta}{m g \cos \theta} & =\mu \\
\mu & =\tan \theta
\end{aligned}
$$

$\therefore \mu$ is the tan of the angle where slipping would first occurs. Bear in mind

$$
\begin{array}{ll}
\tan 45^{\circ}=1 & \tan 27^{\circ}=\frac{1}{2} \\
\tan 63^{\circ}=2 & \\
\tan 72^{\circ}=3 &
\end{array}
$$

4.

Figure 1

A small box of mass 3 kg moves on a rough plane which is inclined at an angle of 20° to the horizontal.

The box is pulled up a line of greatest slope of the plane using a rope which is attached to the box.

The rope makes an angle of 30° with the plane, as shown in Figure 1.
The rope lies in the vertical plane which contains a line of greatest slope of the plane.
The coefficient of friction between the box and the plane is 0.3 .
The tension in the rope is 25 N .
The box is modelled as a particle, the rope is modelled as a light inextensible string and air resistance is ignored.
(a) Using the model, find the acceleration of the box.
(b) Suggest one improvement to the model that would make it more realistic.

The rope now breaks and the box slows down and comes to rest.
(c) Show that, after the box comes to rest, it immediately starts to move down the plane.
a) Resolve 1 to slope

$$
\begin{aligned}
3 g \cos 20 & =R+25 \sin 30^{\circ} \\
3 g \cos 20-25 \sin 30 & =R
\end{aligned}
$$

$$
R=15.127 \mathrm{~N}
$$

N2L parallel to slope
Resurgent $=$ moss $*$ acc

$$
\begin{gathered}
25 \cos 30-F-3 g \sin 20=3 a \\
25 \cos 30-\mu R-3 g \sin 20=3 a \\
\frac{25 \cos 30-0.3 \times 15.127-3 g \sin 20}{3}=a \\
a=2.35 \mathrm{~ms}^{-2}
\end{gathered}
$$

b) Take ais resistance into account
c)

$$
35 \sin 20=10.1 \mathrm{~N}
$$

Limiting Friction

$$
\begin{aligned}
F=\mu R & =\mu \times 3_{s} \cos 20 \\
& =0.3 \times 3 s \cos 20 \\
& =8.29 \mathrm{~N}
\end{aligned}
$$

Granctationel force down slope exceeds limiting friction so bot accelerates down slope

$$
10.1>8.29
$$

