Quadratic sequences
We have seen that if the 2 nd differences are all equal to 2, the n^{2} is in the formula for the n term.
If the 2 nd differences are all equal to 4 then $2 n^{2}$ will be in the formula Ind deft number of n^{2}

1	$\frac{1}{2} n^{2}$
2	n^{2}
4	$2 n^{2}$
6	$3 n^{2}$

Ex

$$
\begin{aligned}
& \text { Ind set } 444 \\
& \text { inst lift } 9 \quad 13 \quad 17 \quad 21 \\
& 9 \quad 18 \quad 3148 \quad 69 \\
& 2 n^{2} \quad \begin{array}{ccccc}
2 & 8 & 18 & 32 & 50 \\
\hline 7 & 10 & 13 & 16 & 19
\end{array} \\
& \begin{array}{llllll}
+3 n & 3 & 6 & 9 & 12 & 15 \\
\hline+4 & 4 & 4 & 4 & 4 & 4
\end{array} \\
& n^{\text {th }} \text { term }=2 n^{2}+3 n+4
\end{aligned}
$$

$E \times 2$

$$
\begin{aligned}
& \begin{array}{llllll}
3 n^{2} & 3 & 12 & 27 & 48 & 75 \\
\hline-1 & -3 & -5 & -7 & -9
\end{array} \\
& \begin{array}{llllll}
-2 n & -2 & -4 & -6 & -8 & -10 \\
+1 & +1 & +1 & +1 & +1 & +1
\end{array} \\
& n^{\text {tn }} \text { term }=3 n^{2}-2 n+1
\end{aligned}
$$

Exercise Find $n^{\text {th }}$ term
1)

$$
\begin{array}{lllll}
4 & 15 & 30 & 49 & 72
\end{array}
$$

2) 9 18 29 42 57
3) $11 \quad 21 \quad 37 \quad 59 \quad 87$

Solutions

$$
\begin{aligned}
& \begin{array}{llllll}
2 n^{2} & 2 & 8 & 18 & 32 & 50 \\
\hline 2 & 7 & 12 & 17 & 22
\end{array}
\end{aligned}
$$

$+5 n$	5	10	15	20	25
-3	-3	-3	-3	-3	-3

$$
n^{x} \text { term }=2 n^{2}+5 n-3
$$

$\begin{array}{llllllll}\text { Indef } & & 2 & 2 & & & \\ \text { staff } & 9 & & 11 & & 13 & & 15\end{array}$
2)
$\begin{array}{lllll}9 & 18 & 29 & 42 & 57\end{array}$

n^{2}	1	4	9	16	25
	8	14	20	26	32
$+6 n$	6	12	18	24	30
+2	2	2	2	2	2

$$
n^{t h} \text { term }=n^{2}+6 n+2
$$

3)

$$
n^{\text {th }} \text { term }=3 n^{2}+n+7
$$

Fibonacci Sequences
The standard Fibonacci sequence

$$
0,1,1,2,3,5,8,13,21,34,55,89, \ldots
$$

A term is obtained by adding together the previous terms.
Two terms are required to start the sequence. other examples

$$
\begin{aligned}
& 4,9,13,22,35,57, \ldots \ldots \\
& 5,12,1729,46,75, \ldots \\
& 6,7,13,20,33,53, \ldots
\end{aligned}
$$

Geometric Sequences
A geometric sequence is obtained by multiplying every term by the same amount to find successive terms

Examples

1) $1,2,4,8,16,32 \ldots 2$
2) $32,16,8,4,2,1, \frac{1}{2}, \frac{1}{4}, \cdots \times \frac{1}{2}$
3) $4,12,36,108,324, \ldots \times 3$
4) $1,5,25,125,625, \ldots \ldots \times 5$

There is a relationship between 3 successive terns

