Exponential Growth and Decay

Exponentials

- Example 2:
- ▶ The population of a form of algae is believed to grow exponentially.
- ▶ On day 1 the population of algae was 2240
- ▶ By day 4 it increased to 35000.
- ▶ Calculate the population of the algae by day 10.

Exl Dayl Population 2240

Day 4 35000 Day 10?

Inctail
$$f = 2240$$

Population

Day 4 $P \times r^3 = Pr^3 = 35000$
 $\Rightarrow r^3 = \frac{35000}{2240} = 15.625$
 $\Rightarrow r = 3\sqrt{15.625} = 15.625$

Day 10 = $P \times r^9 = 2240 \times 2.5^9$
 $\Rightarrow 8544,922$

Exponentials – Graphs

- Example:
- The diagram on the right shows the curve of $y = ab^x$
- It passes through the points A (0, 4), B (2, 16) and C (5, p)
- Find the value of p.

Find P

$$y = ab^{x}$$
 $(0,4)$
 $4 = ab^{0}$
 $4 = a$
 $y = ab^{x}$
 $4 = a$
 $4 = a$
 $4 = a$
 $4 = b^{x}$
 $4 = b^{2}$
 $4 = b^{2}$
 $4 = b^{2}$

$$5 = 4 \times 2^{x}$$
(5,0) $p = 4 \times 2^{s}$
 $p = 128$

Exponentials

- ▶ The diagram on the right shows the curve of $y = ab^x$
- ▶ It passes through the points A (0, 5), B (3, p) and C (4, 1280)
- Find the value of p.

$$y = 5 \times 4^{\times}$$

$$(3,p) \qquad p = 5 \times 4^{3}$$

$$p = 320$$