Show the eqn

$$
x^{3}-2 x-1=0
$$

has a solution between $x=1$ and $x=2$

$$
\begin{aligned}
& f(x)=x^{3}-2 x-1 \\
& f(1)=1^{3}-2(1)-1=-2 \\
& f(2)=2^{3}-2(2)-1=+3
\end{aligned}
$$

We have a sign change in the value of the function between $x=1$ and $x=2$. Since the function is continuous $f(x)=0$ has a solution between $x=1$ and $x=2$

Let $f(x)=x^{3}-3 x^{2}+1$
Show $f(x)=0$
has a solution between

$$
x=2 \text { and } x=3
$$

$$
\begin{aligned}
f(2) & =2^{3}-3(2)^{2}+1 \\
& =8-12+1=-3 \\
f(3) & =3^{3}-3(3)^{2}+1=+1 \\
& =27-27+1=1
\end{aligned}
$$

Continuous function has sign change between $x=2$ and $x=3$ so $f(x)=0$ has a solution
between $x=2$ and $x=3$
Typical Exam Question
a) Show the eqn $x^{3}+4 x=1$ has a solution between $x=0$ and $x=1$
when $x=0 \quad 0^{3}+4(0)=0<1$
when $x=1>1$
$x^{3}+4 x$ is a continuous function so $x^{3}+4 x=1$ for some value of x between 0 and 1
b) Show that the eqn $x^{3}+4 x=1$ can be arranged to give $x=\frac{1}{4}-\frac{x^{3}}{4}$

$$
\begin{aligned}
x^{3}+4 x & =1 \\
4 x & =1-x^{3} \\
x & =\frac{1}{4}-\frac{x^{3}}{4}
\end{aligned}
$$

c) Starting with $x_{0}=0$ use the iteration formula $\quad x_{n+1}=\frac{1}{4}-\frac{x_{n}^{3}}{4}$ twice
to find an estimate for the solution of

$$
\begin{aligned}
& \quad x^{3}+4 x=1 \\
& x_{0}=0
\end{aligned}
$$

$$
\begin{aligned}
& x_{1}=\frac{1}{4}-\frac{0^{3}}{4}=\frac{1}{4}-0=\frac{1}{4} \\
& x_{2}=\frac{1}{4}-\frac{\left(\frac{1}{4}\right)^{3}}{4}=0.246
\end{aligned}
$$

