Approximate Solutions to Equations

Show the eqn

$$x^3 - 2x - (1 = 0)$$

has a solution between
 $x = (1 + 1) = 1$
 $f(x) = x^3 - 2x - 1$
 $f(x) = x^3 - 2(x) - 1 = -2$
 $f(x) = x^3 - 2(x) - 1 = +3$

We have a sign change in the value of the function between x=1 and x=2. Since the function is continuous f(x)=0 has a solution between x=1 and x=2

Ex2

Let
$$f(x) = x^3 - 3x^2 + 1$$

Show $f(x) = 0$
has a solution between
 $3c = 2$ and $x = 3$

$$f(2) = 2^{3} - 3(2)^{2} + 1$$

$$= 8 - 12 + 1 = -3$$

$$f(3) = 3^{3} - 3(3)^{2} + 1$$

$$= 27 - 27 + 1 = +1$$

Continuous function has sign change between x=2 and x=3 so f(x)=0 has a solution

Typical Exam Question

- a) Show the egn $x^3 + 4x = 1$ has a solution between x = 0 and x = 1 when x = 0 $0^3 + 4(0) = 0 < 1$ when x = 1 $1^3 + 4(1) = 5 > 1$ $x^3 + 4x$ is a continuous function so $x^3 + 4x = 1$ for some value of x between x = 1
- b) Show that the eqn $x^3 + 4x = 1$ can be arranged to give $x = \frac{1}{4} \frac{x^3}{4}$ $x^3 + 4x = 1$ $4x = 1 x^3$ $x = \frac{1}{4} \frac{x^3}{4}$
- c) Starting with $x_0 = 0$ use the iteration formula $x_{nri} = \frac{1}{4} \frac{x_n^3}{4}$ twice

to find an estimate for the solution of $x^3 + 4x = 1$

 $x_0 = 0$

$$x_1 = 4 - \frac{0}{4} = 4 - 0 = 4$$

$$x_2 = \frac{1}{4} - \frac{(\frac{1}{4})^3}{4} = 0.246$$