Expanding Trinomials
Ex 1

$$
\begin{aligned}
& (2 x+3)(x+1)(3 x+4) \\
= & \left(2 x^{2}+3 x+2 x+3\right)(3 x+4) \\
= & \left(2 x^{2}+5 x+3\right)(3 x+4) \\
= & \frac{6 x^{3}+15 x^{2}+9 x}{+8 x^{2}+20 x+12} \\
& \frac{6 x^{3}+23 x^{2}+29 x+12}{}
\end{aligned}
$$

Ex2

$$
\begin{aligned}
& (2 x-1)(x+4)(x-3) \\
& \left(2 x^{2}-x+8 x-4\right)(x-3) \\
& \left(2 x^{2}+7 x-4\right)(x-3) \\
& 2 x^{3}+7 x^{2}-4 x \\
& -6 x^{2}-21 x+12 \\
& \hline 2 x^{3}+x^{2}-25 x+12
\end{aligned}
$$

Exercise

$$
\begin{aligned}
& (3 x+1)(x+3)(2 x+5) \\
= & \left(3 x^{2}+x+9 x+3\right)(2 x+5) \\
= & \left(3 x^{2}+10 x+3\right)(2 x+5) \\
= & 6 x^{3}+20 x^{2}+6 x
\end{aligned}
$$

$$
=\frac{+15 x^{2}+50 x+15}{6 x^{3}+35 x^{2}+56 x+15}
$$

Compound Measures

$$
\begin{aligned}
& S=\frac{D}{T} \\
& T=\frac{\partial}{S} \\
& D=S \times T
\end{aligned}
$$

Speed

$$
\begin{aligned}
& D=\frac{M}{V} \\
& V=\frac{M}{D} \\
& M=D_{\times V}
\end{aligned}
$$

Density

$$
A=\frac{F}{P}
$$

$$
F=P \times A
$$

Pressure

$$
\underset{\text { Huge }}{\text { speed }}=\frac{\text { Total Dist }}{\text { Total Tine }} \quad \begin{gathered}
\text { Arse } \\
\text { Deasish }
\end{gathered}=\frac{\text { Total Mass }}{\text { Total Vol }}
$$

Ext If I trasel from A to B at a speed of $40 \mathrm{~km} / \mathrm{h}$ for 2 hows and then travel 60 kn from B to C at $20 \mathrm{~km} / \mathrm{h}$, what was my noeruge speed.

$$
\text { Aude speed }=\frac{\text { Total Dist }}{\text { Total Time }}=\frac{140}{5}=28 \mathrm{ku} / \mathrm{h}
$$

$10 \mathrm{~cm}^{3}$ of A with a density of $2 \mathrm{~g} / \mathrm{cm}^{3}$ is mixed with a vol of $20 \mathrm{~cm}^{3}$ of B which has a mass of 30 g and $40 \mathrm{~cm}^{3}$ of C which a density of $8 \mathrm{~g} / \mathrm{cm}^{3}$. Find the density of the resulting compound.

$$
\text { Density }=\frac{T_{0} \text { ta Mass }}{T_{0} \text { tar } V \text { VI }}=\frac{370}{70}=5.29 \mathrm{~g} / \mathrm{cm}^{3}
$$

Bounds
I run 100 m to the nearat metre in 12.8 s to the nearest 0.1 of a second

Find my max and in speeds

$$
\begin{gathered}
99.5 \mathrm{~m} \leq \text { dist }<100.5 \mathrm{~m} \\
12.75 \leq \text { time }<12.85 \\
\text { speer }=\frac{\text { dist }}{\text { tine }}
\end{gathered}
$$

$$
\begin{aligned}
& \text { max speed }=\frac{100.5}{12.75}=7.882 \mathrm{~ms}^{-1} \\
& \min \text { speed }=\frac{94.5}{12.85}=7.743 \mathrm{~ms}^{-1}
\end{aligned}
$$

Histograms Frequency represented by area

I select a plant at rambo
Find probalilty it is greater than 8 cm tall $=\frac{31}{97}$

