PMT

Induction 2009-12

Question Number	Scheme	Marks
4	When $n = 1$, LHS = $\frac{1}{1 \times 2} = \frac{1}{2}$, RHS = $\frac{1}{1+1} = \frac{1}{2}$. So LHS = RHS and result true for $n = 1$	B1
	Assume true for $n = k$; $\sum_{r=1}^{k} \frac{1}{r(r+1)} = \frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k}{k+1} + \frac{1}{(k+1)(k+2)}$	M1
	$\sum_{r=1}^{k+1} \frac{1}{r(r+1)} = \frac{k(k+2)+1}{(k+1)(k+2)} = \frac{k^2+2k+1}{(k+1)(k+2)} = \frac{(k+1)^2}{(k+1)(k+2)} = \frac{k+1}{k+2}$	M1 A1
	and so result is true for $n = k + 1$ (and by induction true for $n \in \mathbb{Z}^+$)	B1 [5]

Notes:

Evaluate both sides for first B1 Final two terms on second line for first M1 Attempt to find common denominator for second M1. Second M1 dependent upon first. k+1

 $\frac{k+1}{k+2} \text{ for A1}$

'Assume true for n = k 'and 'so result true for n = k + 1' and correct solution for final B1

Question Number	Scheme	Marks
Q8 (a)	f(1) = 5 + 8 + 3 = 16, (which is divisible by 4). (:. True for $n = 1$).	B1
	Using the formula to write down $f(k + 1)$, $f(k + 1) = 5^{k+1} + 8(k + 1) + 3$	M1 A1
	$f(k+1) - f(k) = 5^{k+1} + 8(k+1) + 3 - 5^k - 8k - 3$ = 5(5 ^k) + 8k + 8 + 3 - 5 ^k - 8k - 3 = 4(5 ^k) + 8	M1 A1
	$f(k+1) = 4(5^{k}+2) + f(k)$, which is divisible by 4	A1ft
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1cso (7)
(b)	For $n = 1$, $\binom{2n+1}{2n} = \binom{3}{2} - \binom{2}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} = \binom{3}{2} - \binom{2}{2} - \binom{3}{2} = \binom{3}{2} - \binom{2}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2} = \binom{3}{2} - \binom{3}{2} + \binom{3}{2}$	B1
	$ \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+1 & -2k \\ 2k & 1-2k \end{pmatrix} \begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix} $	M1 A1 A1
	$= \begin{pmatrix} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{pmatrix}$	M1 A1
	\therefore True for $n = k + 1$ if true for $n = k$. True for $n = 1$, \therefore true for all n	A1 cso (7) [14]
(a) Alternative	$f(k+1) = 5(5^k) + 8k + 8 + 3 $ M1	
for 2 nd M:	$= 4(5^{k}) + 8 + (5^{k} + 8k + 3) $ A1 or $= 5(5^{k} + 8k + 3) - 32k - 4$	
	$= 4(5k + 2) + f(k), \qquad \text{or} = 5f(k) - 4(8k+1)$ which is divisible by 4 A1 (or similar methods)	
Notes	 (a) B1 Correct values of 16 or 4 for n = 1 or for n = 0 (Accept "is a multiple of ") M1 Using the formula to write down f(k + 1) A1 Correct expression of f(k+1) (or for f(n + 1)) M1 Start method to connect f(k+1) with f(k) as shown A1 correct working toward multiples of 4, A1 ft result including f(k + 1) as subject, A1cso conclusion 	
	(b) B1 correct statement for $n = 1$ or $n = 0$ First M1: Set up product of two appropriate matrices – product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips M1: States in terms of $(k + 1)$	1
Part (b)	A1 Correct statement A1 for induction conclusion May write $\begin{pmatrix} 3 & -2 \\ 2 & -1 \end{pmatrix}^{k+1} = \begin{pmatrix} 2k+3 & -2k-2 \\ 2k+2 & -2k-1 \end{pmatrix}$. Then may or may not complete the proof	
Alternative	This can be awarded the second M (substituting $k + 1$) and following A (simplification). The first three marks are awarded as before. Concluding that they have reached the sar therefore a result will then be part of final A1 cso but also need other statements as in the method.	ne matrix and

Question Number	Scheme	ſ	Marks
Q8	(a) $\sum_{r=1}^{1} r^3 = 1^3 = 1$ and $\frac{1}{4} \times 1^2 \times 2^2 = 1$	B1	
	Assume true for $n = k$: $\sum_{r=1}^{k+1} r^3 = \frac{1}{4} k^2 (k+1)^2 + (k+1)^3$	B1	
	$\frac{1}{4}(k+1)^{2}[k^{2}+4(k+1)] = \frac{1}{4}(k+1)^{2}(k+2)^{2}$	M1 .	A1
	∴ True for $n = k + 1$ if true for $n = k$. True for $n = 1$, ∴ true for all n .	A1c	so (5)
	(b) $\sum r^3 + 3\sum r + \sum 2 = \frac{1}{4}n^2(n+1)^2 + 3\left(\frac{1}{2}n(n+1)\right), + 2n$	B1,	B1
	$= \frac{1}{4}n[n(n+1)^2 + 6(n+1) + 8]$	M1	
	$=\frac{1}{4}n[n^{3}+2n^{2}+7n+14]=\frac{1}{4}n(n+2)(n^{2}+7) $ (*)	A1	A1cso (5)
	(c) $\sum_{15}^{25} = \sum_{1}^{25} - \sum_{1}^{14}$ with attempt to sub in answer to part (b)	M1	
	$=\frac{1}{4}(25 \times 27 \times 632) - \frac{1}{4}(14 \times 16 \times 203) = 106650 - 11368 = 95282$	A1	(2) [12]
			[12]
	Notes (a) Correct method to identify $(k+1)^2$ as a factor award M1		
	$\frac{1}{4}(k+1)^2(k+2)^2$ award first A1		
	All three elements stated somewhere in the solution award final A1 (b) Attempt to factorise by <i>n</i> for M1		
	$\frac{1}{4}$ and $n^3 + 2n^2 + 7n + 14$ for first A1		
	(c) no working 0/2		

Question Number	Scheme	Marks
9.	(a) If $n = 1$, $\sum_{n=1}^{n} r^2 = 1$ and $\frac{1}{6}n(n+1)(2n+1) = \frac{1}{6} \times 1 \times 2 \times 3 = 1$, so true for $n = 1$.	B1
	Assume result true for $n = k$	M1
	$\sum_{r=1}^{k+1} r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$	M1
	$=\frac{1}{6}(k+1)(2k^2+7k+6) \text{ or } =\frac{1}{6}(k+2)(2k^2+5k+3) \text{ or } =\frac{1}{6}(2k+3)(k^2+3k+2)$	A1
	$=\frac{1}{6}(k+1)(k+2)(2k+3) = \frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text{ or equivalent}$	dM1
	True for $n = k + 1$ if true for $n = k$, (and true for $n = 1$) so true by induction for all n .	A1cso (6)
	Alternative for (a) After first three marks B M M1 as earlier :	(6) B1M1M1
	May state RHS = $\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) = \frac{1}{6}(k+1)(k+2)(2k+3)$ for third M1	dM1
	Expands to $\frac{1}{6}(k+1)(2k^2+7k+6)$ and show equal to $\sum_{k=1}^{k+1}r^2 = \frac{1}{6}k(k+1)(2k+1) + (k+1)^2$ for A1	A1
	So true for $n = k + 1$ if true for $n = k$, and true for $n = 1$, so true by induction for all n .	A1cso (6)
	(b) $\sum_{r=1}^{n} (r^2 + 5r + 6) = \sum_{r=1}^{n} r^2 + 5 \sum_{r=1}^{n} r + (\sum_{r=1}^{n} 6)$	M1
	$\frac{1}{6}n(n+1)(2n+1) + \frac{5}{2}n(n+1), + 6n$	A1, B1
	$= \frac{1}{6}n[(n+1)(2n+1) + 15(n+1) + 36]$	M1
	$=\frac{1}{6}n[2n^{2}+18n+52]=\frac{1}{3}n(n^{2}+9n+26) \text{or } a=9, \ b=26$	A1 (5)
	(c) $\sum_{r=n+1}^{2n} (r+2)(r+3) = \frac{1}{3} 2n(4n^2 + 18n + 26) - \frac{1}{3}n(n^2 + 9n + 26)$	M1 A1ft
	$\frac{1}{3}n(8n^2 + 36n + 52 - n^2 - 9n - 26) = \frac{1}{3}n(7n^2 + 27n + 26) $ (*)	A1cso (3) 14 marks
	Notes: (a) B1: Checks $n = 1$ on both sides and states true for $n = 1$ here or in conclusion M1: Assumes true for $n = k$ (should use one of these two words) M1: Adds $(k+1)$ th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6}n(n+1)(2n+1)$ with $n = k + 1$	

A1: Makes induction statement. Statement true for n = 1 here could contribute to B1 mark earlier

(b) M1: Expands and splits (but allow 6 rather than sigma 6 for this mark) A1: first two terms correct B1: for 6 <i>n</i> M1: Take out factor <i>n</i> /6 or <i>n</i> /3 correctly – no errors factorising A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i> (c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least on A1ft Two correct expressions for their a and b values A1: Completely correct work to printed answer	Question 9 Notes continued:
B1: for 6 <i>n</i> M1: Take out factor <i>n</i> /6 or <i>n</i> /3 correctly – no errors factorising A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i> (c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least on A1ft Two correct expressions for their a and b values	(b) M1: Expands and splits (but allow 6 rather than sigma 6 for this mark)
M1: Take out factor $n/6$ or $n/3$ correctly – no errors factorising A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i> (c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least on A1ft Two correct expressions for their a and b values	A1: first two terms correct
A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i> (c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least on A1ft Two correct expressions for their a and b values	B1: for 6 <i>n</i>
(c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least on A1ft Two correct expressions for their a and b values	M1: Take out factor $n/6$ or $n/3$ correctly – no errors factorising
A1ft Two correct expressions for their a and b values	A1: for correct factorised cubic or for identifying <i>a</i> and <i>b</i>
1	(c) M1: Try to use $\sum_{1}^{2n} (r+2)(r+3) - \sum_{1}^{n} (r+2)(r+3)$ with previous result used at least one
A1: Completely correct work to printed answer	A1ft Two correct expressions for their a and b values
	A1: Completely correct work to printed answer

Question Number	Scheme		Marl	ks
9.	$u_{n+1} = 4u_n + 2$, $u_1 = 2$ and $u_n = \frac{2}{3}(4^n - 1)$			
	$n=1; u_1 = \frac{2}{3}(4^1 - 1) = \frac{2}{3}(3) = 2$	Check that $u_n = \frac{2}{3}(4^n - 1)$	B1	
	So u_n is true when $n = 1$.	yields $\overline{2}$ when $\underline{n=1}$.		
	Assume that for $n = k$ that, $u_k = \frac{2}{3}(4^k - 1)$ is true for $k \in \mathbb{Z}^+$.			
	Then $u_{k+1} = 4u_k + 2$			
	$=4\left(\frac{2}{3}(4^{k}-1)\right)+2$	Substituting $u_k = \frac{2}{3}(4^k - 1)$ into $u_{n+1} = 4u_n + 2.$	M1	
	$=\frac{8}{3}(4)^k - \frac{8}{3} + 2$	An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1	
	$=\frac{2}{3}(4)(4)^{k}-\frac{2}{3}$			
	$= \frac{2}{3} 4^{k+1} - \frac{2}{3}$			
	$= \frac{2}{3} (4^{k+1} - 1)$	$\frac{2}{3}(4^{k+1}-1)$	A1	
	Therefore, the general statement, $u_n = \frac{2}{3}(4^n - 1)$ is true when $n = k + 1$. (As u_n is true for $n = 1$,) then u_n is true for all positive integers by	Require 'True when n=1', 'Assume true when $n=k$ ' and 'True when n = k+1' then true for all <i>n</i> o.e.	A1	
	mathematical induction			(5) [5]

Question Number	Scheme	Notes	Marks
9. (a)	$n = 1; \text{LHS} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^1 = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
	RHS = $\begin{pmatrix} 3^1 & 0 \\ 3(3^1 - 1) & 1 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	Check to see that the result is	
	As LHS = RHS, the matrix result is true for $n = 1$.	true for $n = 1$.	B1
	Assume that the matrix equation is true for $n = k$, ie. $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k = \begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix}$		
	With $n = k+1$ the matrix equation becomes $\begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^{k+1} = \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}^k \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k} & 0 \\ 3(3^{k} - 1) & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \text{or} \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix} \begin{pmatrix} 3^{k} & 0 \\ 3(3^{k} - 1) & 1 \end{pmatrix}$	$\begin{pmatrix} 3^k & 0 \\ 3(3^k - 1) & 1 \end{pmatrix} by \begin{pmatrix} 3 & 0 \\ 6 & 1 \end{pmatrix}$	M1
	$= \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 9(3^{k} - 1) + 6 & 0 + 1 \end{pmatrix} \text{or} \begin{pmatrix} 3^{k+1} + 0 & 0 + 0 \\ 6.3^{k} + 3(3^{k} - 1) & 0 + 1 \end{pmatrix}$	Correct unsimplified matrix with no errors seen.	A1
	$= \begin{pmatrix} 3^{k+1} & 0\\ 9(3^k) - 3 & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3(3^k) - 1) & 1 \end{pmatrix}$		
	$= \begin{pmatrix} 3^{k+1} & 0\\ 3(3^{k+1} - 1) & 1 \end{pmatrix}$	Manipulates so that $k \rightarrow k+1$ on at least one term. Correct result with no errors seen with some working between this	dM1 A1
	If the result is true for $n = k(1)$ then it is now true for $n = k+1$. (2) As the result has shown to be true for $n = 1,(3)$ then the result is true for all n . (4) All 4 aspects need to be mentioned at some point for the last A1.	and the previous A1 Correct conclusion with all previous marks earned	A1 cso
			(6)

Question Number	Scheme	Notes	Marks
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$ {which is divisible by 12}. {.: $f(n)$ is divisible by 12 when $n = 1.$ }	Shows that $f(1) = 12$.	B1
	Assume that for $n = k$, $f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in e^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$	Correct unsimplified expression for $f(k + 1)$.	B1
	giving, $f(k + 1) = 7^{2k+1} + 5$		
	$\therefore f(k+1) - f(k) = (7^{2k+1} + 5) - (7^{2k-1} + 5)$	Applies $f(k+1) - f(k)$. No simplification is necessary and condone missing brackets.	M1
	$= 7^{2k+1} - 7^{2k-1}$		
	$= 7^{2k-1} \left(7^2 - 1 \right)$	Attempting to isolate 7 ^{2k-1}	M1
	$=48(7^{2k-1})$	$48(7^{2k-1})$	Alcso
	$\therefore f(k+1) = f(k) + 48(7^{2k-1}), \text{ which is divisible by}$ 12 as both $f(k)$ and $48(7^{2k-1})$ are both divisible by 12.(1) If the result is true for $n = k$, (2) then it is now true for $n = k+1$. (3) As the result has shown to be true for $n = 1, (4)$ then the result is true for all n . (5). All 5 aspects need to be mentioned at some point for the last A1.	Correct conclusion with no incorrect work. Don't condone missing brackets.	A1 cso
	There are other ways of proving this by induction. S If you are in any doubt consult your team leader a		(6)

Question Number	Scheme	Notes	Marks
Aliter			
8. (c)	$\frac{dy}{dx} = 2\sqrt{3} x^{-\frac{1}{2}} = \frac{2\sqrt{3}}{\sqrt{3}} = 2$		B1
Way 2			
	Gives $y - 12 = 2(x - 3)$	Uses (3, 12) and their "2" to find the equation of the tangent.	M1
		Sectoritation their forms (a) into their	_
	$x = -12 \Longrightarrow y - 12 = 2(-12 - 3)$	Substitutes their <i>x</i> from (a) into their tangent	M1
	y = -18		
	So the coordinates of <i>X</i> are $(-12, -18)$.		A1
			(4)

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 2	{which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.}		
	Assume that for $n = k$,		
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in e^+$.		
	So, $f(k + 1) = 7^{2(k+1)-1} + 5$ giving, $f(k + 1) = 7^{2k+1} + 5$	Correct expression for $f(k + 1)$.	B1
	$7^{2k+1} + 5 = 49 \times 7^{2k-1} + 5$	Attempt to isolate 7 ^{2k-1}	M1
	$= 49 \times (7^{2k-1} + 5) - 240$	M1 Attempt to isolate $7^{2k-1} + 5$	M1
	$f(k+1) = 49 \times f(k) - 240$	Correct expression in terms of $f(k)$	A1
	As both $f(k)$ and 240 are divisible by 12 then so is $f(k + 1)$. If the result is true for $n = k$, then it		
	is now true for $n = k+1$. As the result has	Correct conclusion	A1
	shown to be true for $n = 1$, then the result is true		
	for all <i>n</i> .		
			(

Question Number	Scheme	Notes	Marks
A 1.4			
<i>Aliter</i> 9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 3	$\{\text{which is divisible by } 12\}.$	510 ws that 1(1) = 12.	
Way 5	{ \therefore f (<i>n</i>) is divisible by 12}.		
		1	
	Assume that for $n = k$, f(k) is divisible by 12		
	$so f(k) = 7^{2k-1} + 5 = 12m$		
		·	
	So, $f(k+1) = 7^{2(k+1)-1} + 5$	Correct expression for $f(k + 1)$.	 B1
	giving, $f(k + 1) = 7^{2k+1} + 5$		
	$7^{2^{k+1}} + 5 = 7^2 \cdot 7^{2^{k-1}} + 5 = 49 \times 7^{2^{k-1}} + 5$	Attempt to isolate 7^{2k-1}	M1
	$=49\times(12m-5)+5$	Substitute for <i>m</i>	M1
	$f(k+1) = 49 \times 12m - 240$	Correct expression in terms of <i>m</i>	A1
	As both $49 \times 12m$ and 240 are divisible by 12		
	then so is $f(k + 1)$. If the result is true for $n = k$,		
	then it is now true for $n = k+1$. As the result	Correct conclusion	A1
	has shown to be true for $n = 1$, then the result is		
	true for all <i>n</i> .		
			(6)

Question Number	Scheme	Notes	Marks
Aliter			
9. (b)	$f(1) = 7^{2-1} + 5 = 7 + 5 = 12,$	Shows that $f(1) = 12$.	B1
Way 4	{which is divisible by 12}. { \therefore f (n) is divisible by 12 when $n = 1$.}		-
	Assume that for $n = k$,		-
	$f(k) = 7^{2k-1} + 5$ is divisible by 12 for $k \in \mathfrak{C}^+$.		-
	$f(k+1) + 35f(k) = 7^{2(k+1)-1} + 5 + 35(7^{2k-1} + 5)$	Correct expression for $f(k + 1)$.	B1
	$f(k + 1) + 35f(k) = 7^{2k+1} + 5 + 35(7^{2k-1} + 5)$	Add appropriate multiple of $f(k)$ For 7^{2k} this is likely to be 35 (119, 203,.) For 7^{2k-1} 11 (23, 35, 47,)	M1
	giving, $7.7^{2k} + 5 + 5.7^{2k} + 175$	Attempt to isolate 7^{2k}	M1
	$= 180 + 12 \times 7^{2k} = 12(15 + 7^{2k})$	Correct expression	A1
			-
	: $f(k+1) = 12(7^{2k} + 15) - 35f(k)$. As both $f(k)$		-
	and $12(7^{2k} + 15)$ are divisible by 12 then so is		
	f(k + 1). If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown	Correct conclusion	A1
	to be true for $n = 1$, then the result is true for all		
	<i>n</i> .		(6)

PMT

Question Number	Scheme		Notes	Marks
6(a)	$n = 1$, LHS = $1^3 = 1$, RHS = $\frac{1}{4} \times 1^2 \times 2^2 = 1$	Shows both LHS = 1 and RHS = 1		B1
	Assume true for $n = k$			
	When n = k + 1 $\sum_{r=1}^{k+1} r^3 = \frac{1}{4}k^2(k+1)^2 + (k+1)^3$	Adds $(k + 1)^3$ to t	he given result	M1
	$=\frac{1}{4}(k+1)^{2}[k^{2}+4(k+1)]$	Attempt to factorise out $\frac{1}{4}(k+1)^2$ Correct expression with		dM1
		Correct expression with $\frac{1}{4}(k+1)^2$ factorised out.		A1
	$= \frac{1}{4}(k+1)^{2}(k+2)^{2}$ Must see 4 things: <u>true for n = 1</u> , <u>assumption true for n = k</u> , <u>said true for</u> <u>n = k + 1</u> and therefore <u>true for all n</u>		roof with no errors and previous marks must	A1cso
	See extra notes for alternative approaches		(5)	
(b)	$\sum (r^3 - 2) = \sum r^3 - \sum 2$	Attempt two sum	S	M1
(0)	$\sum r^3 - \sum 2n$ is M0			
		Correct expression	n	A1
	$= \frac{1}{4}n^{2}(n+1)^{2} - 2n$ $= \frac{n}{4}(n^{3} + 2n^{2} + n - 8) *$	Completion to printed answer with no errors seen.		A1
				(3)
(c)	$\sum_{r=20}^{r=50} (r^3 - 2) = \frac{50}{4} \times 130042 - \frac{19}{4} \times 7592$	Attempt $S_{50} - S_{20}$ or $S_{50} - S_{19}$ and substitutes into a correct expression at least once.		M1
	(=1625525-36062)	Correct numerica (unsimplified)	l expression	A1
	= 1 589 463	cao		A1
(c) Way 2	$\sum_{r=20}^{r=50} (r^3 - 2) = \sum_{r=20}^{r=50} r^3 - \sum_{r=20}^{r=50} (2) = \frac{50^2}{4} \times 51^2 - \frac{100}{4} \times 50^2 - \frac{100}{4} \times 50$	$-\frac{19^2}{4} \times 20^2 - 2 \times 31$	$\begin{array}{l} M1 \ for \ (S_{50}-S_{20} \ or \ S_{50} \\ - \ S_{19} \ for \ cubes) - (2x30 \\ or \ 2x31) \\ A1 \ correct \ numerical \\ expression \end{array}$	(3) Total 11
	=1 589 463		A1	

Question Number	Scheme	Notes	Marks
10.	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) - f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts $f(k+1) - f(k)$. A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1} - 2^{2k-1} - 3^{2k-1}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} - 2^{2k-1} - 3^{2k-1}$		
	$= 4(2^{2k-1}) + 9(3^{2k-1}) - 2^{2k-1} - 3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 3(2^{2k-1}) + 8(3^{2k-1})$		
	$= 3(2^{2k-1}) + 3(3^{2k-1}) + 5(3^{2k-1})$		
	$= 3f(k) + 5\left(3^{2k-1}\right)$		
	$\therefore f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks
	All methods should complete to $f(k + 1) =$ where $f(k + 1) = .$		
	Note that there are many different ways of pro	oving this result by induction.	

Question Number	Scheme	Notes	Marks
Aliter	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
10. Way 2	$f(1) = 2^1 + 3^1 = 5$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$,		
	$f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
	$f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1}$	M1: Attempts $f(k + 1)$. A1: Correct expression for $\underline{f(k + 1)}$ (Can be unsimplified)	M1A1
	$= 2^{2k+1} + 3^{2k+1}$		
	$= 4(2^{2k-1}) + 9(3^{2k-1})$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$f(k+1) = 4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$ or $f(k+1) = 4f(k) + 5(3^{2k-1})$ or $f(k+1) = 9f(k) - 5(2^{2k-1})$ or $f(k+1) = 9(2^{2k-1} + 3^{2k-1}) - 5(2^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all <i>n</i> .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]

Question Number	Scheme	Notes	Marks
<i>Aliter</i> 10. Way 3	$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
	$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
	Assume that for $n = k$, $f(k) = 2^{2^{k-1}} + 3^{2^{k-1}}$ is divisible by 5 for $k \in \varphi^+$.		
	$f(k+1) + f(k) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1}$	M1: Attempts $f(k+1) + f(k)$. A1: Correct expression for $\underline{f(k+1)}$ (Can be unsimplified)	M1A1
	$= 2^{2^{k+1}} + 3^{2^{k+1}} + 2^{2^{k-1}} + 3^{2^{k-1}}$		
	$= 2^{2k-1+2} + 3^{2k-1+2} + 2^{2k-1} + 3^{2k-1}$		
	$= 4(2^{2k-1}) + 2^{2k-1} + 9(3^{2k-1}) + 3^{2k-1}$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
	$= 5(2^{2k-1}) + 10(3^{2k-1})$		
	$= 5(2^{2^{k-1}}) + 5(3^{2^{k-1}}) + 5(3^{2^{k-1}})$		
	$= 5f(k) + 5(3^{2k-1})$		
	$\therefore f(k+1) = 4f(k) + 5(3^{2k-1}) \text{ or}$ $4(2^{2k-1} + 3^{2k-1}) + 5(3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
	If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all n .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks

Scheme	Notes	Marks
$f(n) = 2^{2n-1} + 3^{2n-1}$ is divisible by 5.		
$f(1) = 2^1 + 3^1 = 5,$	Shows that $f(1) = 5$.	B1
Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1}$ is divisible by 5 for $k \in \phi^+$.		
f(k+1) = f(k+1) + f(k) - f(k)		
$f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$	M1: Attempts f(k+1) + f(k) - f(k)	M1A1
	A1: Correct expression for $f(k + 1)$ (Can be unsimplified)	
$= 4(2^{2k-1}) + 9(3^{2k-1}) + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$	Achieves an expression in 2^{2k-1} and 3^{2k-1}	M1
$= 5(2^{2^{k-1}}) + 10(3^{2^{k-1}}) - (2^{2^{k-1}} + 3^{2^{k-1}})$		
$=5((2^{2^{k-1}})+2(3^{2^{k-1}}))-(2^{2^{k-1}}+3^{2^{k-1}})$		
$=5\left(\left(2^{2k-1}\right)+2\left(3^{2k-1}\right)\right)-f(k) \text{ or } 5\left(\left(2^{2k-1}\right)+2\left(3^{2k-1}\right)\right)-(2^{2k-1}+3^{2k-1})$	Where $f(k + 1)$ is correct and is clearly a multiple of 5.	A1
If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for all <i>n</i> .	Correct conclusion at the end , at least as given, and all previous marks scored.	A1 cso
		[6]
		6
	$f(n) = 2^{2n-1} + 3^{2n-1} \text{ is divisible by 5.}$ $f(1) = 2^{1} + 3^{1} = 5,$ Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1} \text{ is divisible by 5 for } k \in \phi^{+}.$ $f(k+1) = f(k+1) + f(k) - f(k)$ $f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$ $= 4(2^{2k-1}) + 9(3^{2k-1}) + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$ $= 5((2^{2k-1}) + 10(3^{2k-1}) - (2^{2k-1} + 3^{2k-1})$ $= 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $= 5((2^{2k-1}) + 2(3^{2k-1})) - f(k) \text{ or } 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ If the result is true for $n = k$, then it is now true for $n = k+1$. As the result has shown to be true for $n = 1$, then the result is true for	$f(n) = 2^{2n-1} + 3^{2n-1} \text{ is divisible by 5.}$ $f(1) = 2^{1} + 3^{1} = 5,$ Assume that for $n = k$, $f(k) = 2^{2k-1} + 3^{2k-1} \text{ is divisible by 5 for } k \in \varphi^{+}.$ $f(k+1) = f(k+1) + f(k) - f(k)$ $f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 2^{2(k+1)-1} + 3^{2(k+1)-1} + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 2^{2(k-1)} + 9(3^{2k-1}) + 2^{2k-1} + 3^{2k-1} - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 5(2^{2k-1}) + 10(3^{2k-1}) - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k+1) = 5((2^{2k-1}) + 2(3^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f((2^{2k-1})) - (2^{2k-1} + 3^{2k-1})$ $f(k) \text{ or } f(k) \text$