Question Number	Scheme	Marks
4	When $n=1$, LHS $=\frac{1}{1 \times 2}=\frac{1}{2}$, RHS $=\frac{1}{1+1}=\frac{1}{2}$. So LHS $=$ RHS and result true for $n=1$ Assume true for $n=k ; \sum_{r=1}^{k} \frac{1}{r(r+1)}=\frac{k}{k+1}$ and so $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k}{k+1}+\frac{1}{(k+1)(k+2)}$ $\sum_{r=1}^{k+1} \frac{1}{r(r+1)}=\frac{k(k+2)+1}{(k+1)(k+2)}=\frac{k^{2}+2 k+1}{(k+1)(k+2)}=\frac{(k+1)^{2}}{(k+1)(k+2)}=\frac{k+1}{k+2}$ and so result is true for $n=k+1$ (and by induction true for $n \in \mathbf{Z}^{+}$)	M1 M1 A1 B1 [5]

Notes:
Evaluate both sides for first B1
Final two terms on second line for first M1
Attempt to find common denominator for second M1.
Second M1 dependent upon first.
$\frac{k+1}{k+2}$ for A1
'Assume true for $n=k$ 'and 'so result true for $n=k+1$ ' and correct solution for final B1

Question Number	Scheme Marks
Q8 (a)	$f(1)=5+8+3=16,($ which is divisible by 4$) .(\therefore$ True for $n=1)$. Using the formula to write down $\mathrm{f}(k+1), \quad \mathrm{f}(k+1)=5^{k+1}+8(k+1)+3$ $\begin{aligned} \mathrm{f}(k+1)-\mathrm{f}(k) & =5^{k+1}+8(k+1)+3-5^{k}-8 k-3 \\ & =5\left(5^{k}\right)+8 k+8+3-5^{k}-8 k-3=4\left(5^{k}\right)+8 \end{aligned}$ $\mathrm{f}(k+1)=4\left(5^{k}+2\right)+\mathrm{f}(k)$, which is divisible by 4 \therefore True for $n=k+1$ if true for $n=k$. True for $n=1, \therefore$ true for all n. For $n=1,\left(\begin{array}{cc}2 n+1 & -2 n \\ 2 n & 1-2 n\end{array}\right)=\left(\begin{array}{cc}3 & -2 \\ 2 & -1\end{array}\right)=\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)^{1} \quad(\therefore$ True for $n=1$. $\begin{gathered} \left(\begin{array}{cc} 3 & -2 \\ 2 & -1 \end{array}\right)^{k+1}=\left(\begin{array}{cc} 2 k+1 & -2 k \\ 2 k & 1-2 k \end{array}\right)\left(\begin{array}{cc} 3 & -2 \\ 2 & -1 \end{array}\right)=\left(\begin{array}{cc} 2 k+3 & -2 k-2 \\ 2 k+2 & -2 k-1 \end{array}\right) \\ =\left(\begin{array}{cc} 2(k+1)+1 & -2(k+1) \\ 2(k+1) & 1-2(k+1) \end{array}\right) \end{gathered}$ \therefore True for $n=k+1$ if true for $n=k$. True for $\boldsymbol{n}=1, \therefore$ true for all \boldsymbol{n}
(a) Alternative for $2^{\text {nd }} \mathrm{M}$:	$\begin{aligned} \mathrm{f}(k+1) & =5\left(5^{k}\right)+8 k+8+3 & & \mathrm{M} 1 \\ & =4\left(5^{k}\right)+8+\left(5^{k}+8 k+3\right) & & \mathrm{A} 1 \text { or }=5\left(5^{k}+8 k+3\right)-32 k-4 \\ & =4\left(5^{k}+2\right)+\mathrm{f}(k), & & \text { or }=5 \mathrm{f}(k)-4(8 k+1) \\ & \quad \text { which is divisible by } 4 & & \text { A1 (or similar methods) } \end{aligned}$
Notes Part (b) Alternative	(a) B1 Correct values of 16 or 4 for $n=1$ or for $n=0$ (Accept "is a multiple of") M1 Using the formula to write down $\mathrm{f}(k+1)$ A1 Correct expression of $\mathrm{f}(k+1)$ (or for $\mathrm{f}(n+1)$ M1 Start method to connect $\mathrm{f}(k+1)$ with $\mathrm{f}(k)$ as shown A1 correct working toward multiples of 4 , A 1 ft result including $\mathrm{f}(k+1)$ as subject, A1cso conclusion (b) B1 correct statement for $n=1$ or $n=0$ First M1: Set up product of two appropriate matrices - product can be either way round A1 A0 for one or two slips in simplified result A1 A1 all correct simplified A0 A0 more than two slips M1: States in terms of $(k+1)$ A1 Correct statement A1 for induction conclusion May write $\left(\begin{array}{ll}3 & -2 \\ 2 & -1\end{array}\right)^{k+1}=\left(\begin{array}{ll}2 k+3 & -2 k-2 \\ 2 k+2 & -2 k-1\end{array}\right)$. Then may or may not complete the proof. This can be awarded the second M (substituting $k+1$) and following A (simplification) in part (b). The first three marks are awarded as before. Concluding that they have reached the same matrix and therefore a result will then be part of final A1 cso but also need other statements as in the first method.

Question Number	Scheme	Marks
Q8	(a) $\sum_{r=1}^{1} r^{3}=1^{3}=1$ and $\frac{1}{4} \times 1^{2} \times 2^{2}=1$ Assume true for $n=k$: $\begin{aligned} & \sum_{r=1}^{k+1} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3} \\ & \frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right]=\frac{1}{4}(k+1)^{2}(k+2)^{2} \end{aligned}$ \therefore True for $n=k+1$ if true for $n=k$. True for $n=1$, \therefore true for all n.	B1 B1 M1 A1 Alcso
	$\text { (b) } \begin{align*} & \sum r^{3}+3 \sum r+\sum 2=\frac{1}{4} n^{2}(n+1)^{2}+3\left(\frac{1}{2} n(n+1)\right),+2 n \\ = & \frac{1}{4} n\left[n(n+1)^{2}+6(n+1)+8\right] \\ = & \frac{1}{4} n\left[n^{3}+2 n^{2}+7 n+14\right]=\frac{1}{4} n(n+2)\left(n^{2}+7\right) \tag{*} \end{align*}$	B1, B1 M1 A1 Alcso (5)
	$\begin{aligned} & \text { (c) } \sum_{15}^{25}=\sum_{1}^{25}-\sum_{1}^{14} \quad \text { with attempt to sub in answer to part (b) } \\ & =\frac{1}{4}(25 \times 27 \times 632)-\frac{1}{4}(14 \times 16 \times 203)=106650-11368=95282 \end{aligned}$	M1 A1 (2) [12]
	Notes (a) Correct method to identify $(k+1)^{2}$ as a factor award M1 $\frac{1}{4}(k+1)^{2}(k+2)^{2}$ award first A1 All three elements stated somewhere in the solution award final A1 (b) Attempt to factorise by n for M1 $\frac{1}{4}$ and $n^{3}+2 n^{2}+7 n+14$ for first A1 (c) no working $0 / 2$	

Question Number	Scheme	Marks
9.	(a) If $n=1, \sum_{r=1}^{n} r^{2}=1$ and $\frac{1}{6} n(n+1)(2 n+1)=\frac{1}{6} \times 1 \times 2 \times 3=1$, so true for $n=1$. Assume result true for $n=k$ $\begin{aligned} & \sum_{r=1}^{k+1} r^{2}=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2} \\ = & \frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right) \text { or }=\frac{1}{6}(k+2)\left(2 k^{2}+5 k+3\right) \text { or }=\frac{1}{6}(2 k+3)\left(k^{2}+3 k+2\right) \\ = & \frac{1}{6}(k+1)(k+2)(2 k+3)=\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1) \text { or equivalent } \end{aligned}$ True for $n=k+1$ if true for $n=k$, (and true for $n=1$) so true by induction for all n.	B1 M1 M1 A1 dM1 A1cso (6)
	Alternative for (a) After first three marks B M M1 as earlier : May state RHS $=\frac{1}{6}(k+1)(\{k+1\}+1)(2\{k+1\}+1)=\frac{1}{6}(k+1)(k+2)(2 k+3)$ for third M1 Expands to $\frac{1}{6}(k+1)\left(2 k^{2}+7 k+6\right)$ and show equal to $\sum_{r=1}^{k+1} r^{2}=\frac{1}{6} k(k+1)(2 k+1)+(k+1)^{2}$ for A1 So true for $n=k+1$ if true for $n=k$, and true for $n=1$, so true by induction for all n.	B1M1M1 dM1 A1 A1cso (6)
	$\text { (b) } \begin{aligned} & \sum_{r=1}^{n}\left(r^{2}+5 r+6\right)=\sum_{r=1}^{n} r^{2}+5 \sum_{r=1}^{n} r+\left(\sum_{r=1}^{n} 6\right) \\ & \frac{1}{6} n(n+1)(2 n+1)+\frac{5}{2} n(n+1), \quad+6 n \\ & =\frac{1}{6} n[(n+1)(2 n+1)+15(n+1)+36] \\ & =\frac{1}{6} n\left[2 n^{2}+18 n+52\right]=\frac{1}{3} n\left(n^{2}+9 n+26\right) \quad \text { or } a=9, b=26 \end{aligned}$	M1 A1, B1 M1 A1
	$\text { (c) } \begin{aligned} & \sum_{r=n+1}^{2 n}(r+2)(r+3)=\frac{1}{3} 2 n\left(4 n^{2}+18 n+26\right)-\frac{1}{3} n\left(n^{2}+9 n+26\right) \\ & \frac{1}{3} n\left(8 n^{2}+36 n+52-n^{2}-9 n-26\right)=\frac{1}{3} n\left(7 n^{2}+27 n+26\right) \end{aligned}$	M1 A1ft A1cso (3) 14 marks
	Notes: (a) B1: Checks $n=1$ on both sides and states true for $n=1$ here or in conclusion M1: Assumes true for $n=k$ (should use one of these two words) M1: Adds ($k+1$)th term to sum of k terms A1: Correct work to support proof M1: Deduces $\frac{1}{6} n(n+1)(2 n+1)$ with $n=k+1$ A1: Makes induction statement. Statement true for $n=1$ here could contribute to B1 mark earlier	

Question 9 Notes continued:
(b) M1: Expands and splits (but allow 6 rather than sigma 6 for this mark)

A1: first two terms correct
B1: for $6 n$
M1: Take out factor $n / 6$ or $n / 3$ correctly - no errors factorising
A1: for correct factorised cubic or for identifying a and b
(c) M1: Try to use $\sum_{1}^{2 n}(r+2)(r+3)-\sum_{1}^{n}(r+2)(r+3)$ with previous result used at least once

A1ft Two correct expressions for their a and b values
A1: Completely correct work to printed answer

Question Number	Scheme		Marks
9.	$u_{n+1}=4 u_{n}+2, u_{1}=2$ and $u_{n}=\frac{2}{3}\left(4^{n}-1\right)$		B1
	$n=1 ; \quad u_{1}=\frac{2}{3}\left(4^{1}-1\right)=\frac{2}{3}(3)=2$ So u_{n} is true when $n=1$.	Check that $u_{n}=\frac{2}{3}\left(4^{n}-1\right)$ yields 2 when $n=1$.	
	Assume that for $n=k$ that, $u_{k}=\frac{2}{3}\left(4^{k}-1\right)$ is true for $k \in \mathbb{Z}^{+}$.		
	Then $u_{k+1}=4 u_{k}+2$		
	$=4\left(\frac{2}{3}\left(4^{k}-1\right)\right)+2$	Substituting $u_{k}=\frac{2}{3}\left(4^{k}-1\right)$ into $u_{n+1}=4 u_{n}+2 .$	M1
	$=\frac{8}{3}(4)^{k}-\frac{8}{3}+2$	An attempt to multiply out the brackets by 4 or $\frac{8}{3}$	M1
	$=\frac{2}{3}(4)(4)^{k}-\frac{2}{3}$		
	$=\frac{2}{3} 4^{k+1}-\frac{2}{3}$		
	$=\frac{2}{3}\left(4^{k+1}-1\right)$	$\frac{2}{3}\left(4^{k+1}-1\right)$	A1
	Therefore, the general statement, $u_{n}=\frac{2}{3}\left(4^{n}-1\right)$ is true when $n=k+1$. (As u_{n} is true for $n=1$,) then u_{n} is true for all positive integers by mathematical induction	Require 'True when $\mathrm{n}=1$ ', 'Assume true when $n=k$ ' and 'True when $n=k+1$ ' then true for all n o.e.	A1
			$\begin{gathered} (5) \\ {[5]} \end{gathered}$

Question Number	Scheme	Notes	Marks
9. (a)	$\begin{aligned} n=1 ; & \text { LHS } \end{aligned}=\left(\begin{array}{ll} 3 & 0 \\ 6 & 1 \end{array}\right)^{1}=\left(\begin{array}{ll} 3 & 0 \\ 6 & 1 \end{array}\right) .$ As LHS $=$ RHS, the matrix result is true for $n=1$.	Check to see that the result is true for $n=1$.	B1
	Assume that the matrix equation is true for $n=k$, ie. $\quad\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)^{k}=\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)$		
	With $n=k+1$ the matrix equation becomes $\left(\begin{array}{ll} 3 & 0 \\ 6 & 1 \end{array}\right)^{k+1}=\left(\begin{array}{ll} 3 & 0 \\ 6 & 1 \end{array}\right)^{k}\left(\begin{array}{ll} 3 & 0 \\ 6 & 1 \end{array}\right)$		
	$=\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)$ or $\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)$	$\left(\begin{array}{cc}3^{k} & 0 \\ 3\left(3^{k}-1\right) & 1\end{array}\right)$ by $\left(\begin{array}{ll}3 & 0 \\ 6 & 1\end{array}\right)$	M1
	$=\left(\begin{array}{cc}3^{k+1}+0 & 0+0 \\ 9\left(3^{k}-1\right)+6 & 0+1\end{array}\right)$ or $\left(\begin{array}{cc}3^{k+1}+0 & 0+0 \\ 6.3^{k}+3\left(3^{k}-1\right) & 0+1\end{array}\right)$	Correct unsimplified matrix with no errors seen.	A1
	$=\left(\begin{array}{cc}3^{k+1} & 0 \\ 9\left(3^{k}\right)-3 & 1\end{array}\right)$		
	$=\left(\begin{array}{cc}3^{k+1} & 0 \\ 3\left(3\left(3^{k}\right)-1\right) & 1\end{array}\right)$		
	$=\left(\begin{array}{cc}3^{k+1} & 0 \\ 3\left(3^{k+1}-1\right) & 1\end{array}\right)$	Manipulates so that $k \rightarrow k+1$ on at least one term.	dM1
		Correct result with no errors seen with some working between this and the previous A1	A1
	If the result is true for $n=k,(1)$ then it is now true for $n=k+1$. (2) As the result has shown to be true for $n=1$,(3) then the result is true for all n. (4) All 4 aspects need to be mentioned at some point for the last A1.	Correct conclusion with all previous marks earned	A1 cso
			(6)

Question Number	Scheme	Notes	Marks
Aliter 8. (c) Way 2			B1
	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \sqrt{3} x^{-\frac{1}{2}}=\frac{2 \sqrt{3}}{\sqrt{3}}=2$		
	Gives $y-12=2(x-3)$	Uses $(3,12)$ and their " 2 " to find the equation of the tangent.	M1
	$x=-12 \Rightarrow y-12=2(-12-3)$	Substitutes their x from (a) into their tangent	M1
	$y=-18$		A1
	So the coordinates of X are ($-12,-18$).		
			(4)

Question Number	Scheme	Notes	Marks
Aliter 9. (b) Way 2			B1
	$\mathrm{f}(1)=7^{2-1}+5=7+5=12$,	Shows that $\mathrm{f}(1)=12$.	
	\{which is divisible by 12$\}$. $\{\therefore \mathrm{f}(n)$ is divisible by 12 when $n=1$.		
	Assume that for $n=k$,		
	$\mathrm{f}(\mathrm{k})=7^{2 k-1}+5$ is divisible by 12 for $k \in ¢^{+}$.		
	So, $\mathrm{f}(k+1)=7^{2(k+1)-1}+5$	Correct expression for $\mathrm{f}(k+1)$.	B1
	giving, $\mathrm{f}(\mathrm{k}+1)=7^{2 k+1}+5$		M1
	$7^{2 k+1}+5=49 \times 7^{2 k-1}+5$	Attempt to isolate $7^{2 k-1}$	
	$=49 \times\left(7^{2 k-1}+5\right)-240$	M1 Attempt to isolate $7^{2 k-1}+5$	M1
	$\mathrm{f}(\mathrm{k}+1)=49 \times \mathrm{f}(\mathrm{k})-240$	Correct expression in terms of $\mathrm{f}(k)$	A1
	As both $\mathrm{f}(k)$ and 240 are divisible by 12 then so is $\mathrm{f}(k+1)$. If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion	A1
			(6)

Question Number	Scheme	Notes	Marks
Aliter 9. (b) Way 3			B1
	$\mathrm{f}(1)=7^{2-1}+5=7+5=12$,	Shows that $\mathrm{f}(1)=12$.	
	\{which is divisible by 12$\}$. $\{\therefore \mathrm{f}(n)$ is divisible by 12 when $n=1$.		
	Assume that for $n=k, \mathrm{f}(\mathrm{k})$ is divisible by 12		
	sof $f(k)=7^{2 k-1}+5=12 m$		
	So, $\mathrm{f}(\mathrm{k}+1)=7^{2(k+1)-1}+5$	Correct expression forf $(k+1)$.	B1
	giving, $\mathrm{f}(k+1)=7^{2 k+1}+5$		M1
	$7^{2 k+1}+5=7^{2} .7^{2 k-1}+5=49 \times 7^{2 k-1}+5$	Attempt to isolate $7^{2 k-1}$	
	$=49 \times(12 m-5)+5$	Substitute for m	M1
	$\mathrm{f}(\mathrm{k}+1)=49 \times 12 m-240$	Correct expression in terms of m	A1
	As both $49 \times 12 \mathrm{~m}$ and 240 are divisible by 12 then so is $\mathrm{f}(k+1)$. If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion	A1
			(6)

Question Number	Scheme		Notes	Marks
6(a)	$n=1$, LHS $=1^{3}=1$, RHS $=\frac{1}{4} \times 1^{2} \times 2^{2}=1$	Shows both LHS = 1 and RHS $=1$		B1
	Assume true for $\mathrm{n}=\mathrm{k}$			
	When $\mathrm{n}=\mathrm{k}+1$ $\sum_{r=1}^{k+1} r^{3}=\frac{1}{4} k^{2}(k+1)^{2}+(k+1)^{3}$	Adds ($\mathrm{k}+1)^{3}$ to the given result		M1
		Attempt to factorise out $\frac{1}{4}(k+1)^{2}$		dM1
	$=\frac{1}{4}(k+1)^{2}\left[k^{2}+4(k+1)\right]$	Correct expression with $\frac{1}{4}(k+1)^{2}$ factorised out.		A1
	$=\frac{1}{4}(k+1)^{2}(k+2)^{2}$ Must see 4 things: true for $\mathrm{n}=1$, assumption true for $\mathrm{n}=\mathrm{k}$, said true for $\mathrm{n}=\mathrm{k}+1$ and therefore true for all n	Fully complete proof with no errors and comment. All the previous marks must have been scored.		A1cso
	See extra notes for alternative approaches			(5)
(b)	$\sum\left(r^{3}-2\right)=\sum r^{3}-\sum 2$	Attempt two sums		M1
	$\sum r^{3}-\sum 2 n$ is M0			
	$=\frac{1}{4} n^{2}(n+1)^{2}-2 n$	Correct expression		A1
	$=\frac{n}{4}\left(n^{3}+2 n^{2}+n-8\right) *$	Completion to printed answer with no errors seen.		A1
				(3)
(c)	$\begin{aligned} & \sum_{r=20}^{r=50}\left(r^{3}-2\right)=\frac{50}{4} \times 130042-\frac{19}{4} \times 7592 \\ & (=1625525-36062) \end{aligned}$	Attempt $\mathrm{S}_{50}-\mathrm{S}_{20}$ or $\mathrm{S}_{50}-\mathrm{S}_{19}$ and substitutes into a correct expression at least once.		M1
		Correct numerical expression (unsimplified)		A1
	= 1589463	cao		A1
				(3)
(c) Way 2	$\sum_{r=20}^{r=50}\left(r^{3}-2\right)=\sum_{r=20}^{r=50} r^{3}-\sum_{r=20}^{r=50}(2)=\frac{50^{2}}{4} \times 51^{2}-\frac{19^{2}}{4} \times 20^{2}-2 \times 31$		M1 for $\left(\mathrm{S}_{50}-\mathrm{S}_{20}\right.$ or S_{50} $-\mathrm{S}_{19}$ for cubes) - (2x30 or 2x31) A1 correct numerical expression	Total 11
	=1 589463		A1	

Question Number	Scheme	Notes	Marks
10.	$\mathrm{f}(n)=2^{2 n-1}+3^{2 n-1}$ is divisible by 5 .		
	$\mathrm{f}(1)=2^{1}+3^{1}=5$,	Shows that $\mathrm{f}(1)=5$.	B1
	Assume that for $n=k$, $\mathrm{f}(k)=2^{2 k-1}+3^{2 k-1}$ is divisible by 5 for $k \in \varnothing^{+}$.		
	$\mathrm{f}(k+1)-\mathrm{f}(k)=2^{2(k+1)-1}+3^{2(k+1)-1}-\left(2^{2 k-1}+3^{2 k-1}\right)$	M1: Attempts $\mathrm{f}(k+1)-\mathrm{f}(k)$. A1: Correct expression for $\mathrm{f}(k+1)$ (Can be unsimplified)	M1A1
	$=2^{2 k+1}+3^{2 k+1}-2^{2 k-1}-3^{2 k-1}$		
	$=2^{2 k-1+2}+3^{2 k-1+2}-2^{2 k-1}-3^{2 k-1}$		
	$=4\left(2^{2 k-1}\right)+9\left(3^{2 k-1}\right)-2^{2 k-1}-3^{2 k-1}$	Achieves an expression in $2^{2 k-1}$ and $3^{2 k-1}$	M1
	$=3\left(2^{2 k-1}\right)+8\left(3^{2 k-1}\right)$		
	$=3\left(2^{2 k-1}\right)+3\left(3^{2 k-1}\right)+5\left(3^{2 k-1}\right)$		
	$=3 \mathrm{f}(k)+5\left(3^{2 k-1}\right)$		
	$\begin{aligned} & \therefore \mathrm{f}(k+1)=4 \mathrm{f}(k)+5\left(3^{2 k-1}\right) \text { or } \\ & 4\left(2^{2 k-1}+3^{2 k-1}\right)+5\left(3^{2 k-1}\right) \end{aligned}$	Where $\mathrm{f}(k+1)$ is correct and is clearly a multiple of 5 .	A1
	If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all \boldsymbol{n}.	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks
	All methods should complete to $f(k+1)=\ldots$ where $f(k+1)$ is clearly shown to be divisible by 5 to enable the final 2 marks to be available.		
Note that there are many different ways of proving this result by induction.			

Question Number	Scheme	Notes	Marks
Aliter 10. Way 2	$\mathrm{f}(n)=2^{2 n-1}+3^{2 n-1}$ is divisible by 5 .		
	$\mathrm{f}(1)=2^{1}+3^{1}=5$	Shows that $\mathrm{f}(1)=5$.	B1
	Assume that for $n=k$, $\mathrm{f}(k)=2^{2 k-1}+3^{2 k-1}$ is divisible by 5 for $k \in \varnothing^{+}$.		
		M1: Attempts $\mathrm{f}(k+1)$.	
	$\mathrm{f}(k+1)=2^{2(k+1)-1}+3^{2(k+1)-1}$	A1: Correct expression for $\underline{\mathrm{f}(k+1)}$ (Can be unsimplified)	M1A1
	$=2^{2 k+1}+3^{2 k+1}$		
	$=4\left(2^{2 k-1}\right)+9\left(3^{2 k-1}\right)$	Achieves an expression in $2^{2 k-1}$ and $3^{2 k-1}$	M1
	$\begin{aligned} & \mathrm{f}(k+1)=4\left(2^{2 k-1}+3^{2 k-1}\right)+5\left(3^{2 k-1}\right) \\ & \text { or } \mathrm{f}(k+1)=4 \mathrm{f}(k)+5\left(3^{2 k-1}\right) \\ & \text { or } \mathrm{f}(k+1)=9 \mathrm{f}(k)-5\left(2^{2 k-1}\right) \\ & \text { or } \mathrm{f}(k+1)=9\left(2^{2 k-1}+3^{2 k-1}\right)-5\left(2^{2 k-1}\right) \end{aligned}$	Where $\mathrm{f}(k+1)$ is correct and is clearly a multiple of 5 .	A1
	If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]

Question Number	Scheme	Notes	Marks
$\begin{gathered} \text { Aliter } \\ \text { 10. } \\ \text { Way } 3 \end{gathered}$	$\mathrm{f}(n)=2^{2 n-1}+3^{2 n-1}$ is divisible by 5 .		
	$\mathrm{f}(1)=2^{1}+3^{1}=5$,	Shows that $\mathrm{f}(1)=5$.	B1
	Assume that for $n=k$, $\mathrm{f}(k)=2^{2 k-1}+3^{2 k-1}$ is divisible by 5 for $k \in \varnothing^{+}$.		
		M1: Attempts $\mathrm{f}(k+1)+\mathrm{f}(k)$.	
	$\mathrm{f}(k+1)+\mathrm{f}(k)=2^{2(k+1)-1}+3^{2(k+1)-1}+2^{2 k-1}+3^{2 k-1}$	A1: Correct expression for $\mathrm{f}(k+1)$ (Can be unsimplified)	M1A1
	$=2^{2 k+1}+3^{2 k+1}+2^{2 k-1}+3^{2 k-1}$		
	$=2^{2 k-1+2}+3^{2 k-1+2}+2^{2 k-1}+3^{2 k-1}$		
	$=4\left(2^{2 k-1}\right)+2^{2 k-1}+9\left(3^{2 k-1}\right)+3^{2 k-1}$	Achieves an expression in $2^{2 k-1}$ and $3^{2 k-1}$	M1
	$=5\left(2^{2 k-1}\right)+10\left(3^{2 k-1}\right)$		
	$=5\left(2^{2 k-1}\right)+5\left(3^{2 k-1}\right)+5\left(3^{2 k-1}\right)$		
	$=5 \mathrm{f}(k)+5\left(3^{2 k-1}\right)$		
	$\begin{aligned} & \therefore \mathrm{f}(k+1)=4 \mathrm{f}(k)+5\left(3^{2 k-1}\right) \text { or } \\ & 4\left(2^{2 k-1}+3^{2 k-1}\right)+5\left(3^{2 k-1}\right) \end{aligned}$	Where $\mathrm{f}(k+1)$ is correct and is clearly a multiple of 5 .	A1
	If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion at the end, at least as given, and all previous marks scored.	A1 cso
			[6]
			6 marks

Question Number	Scheme	Notes	Marks
Aliter 10. Way 4	$\mathrm{f}(n)=2^{2 n-1}+3^{2 n-1}$ is divisible by 5 .		
	$\mathrm{f}(1)=2^{1}+3^{1}=5$,	Shows that $\mathrm{f}(1)=5$.	B1
	Assume that for $n=k$, $\mathrm{f}(k)=2^{2 k-1}+3^{2 k-1}$ is divisible by 5 for $k \in \varnothing^{+}$.		
	$\mathrm{f}(k+1)=\mathrm{f}(k+1)+\mathrm{f}(k)-\mathrm{f}(k)$		
		$\begin{aligned} & \text { M1: Attempts } \\ & \mathrm{f}(k+1)+\mathrm{f}(k)-\mathrm{f}(k) \end{aligned}$	
	$\mathrm{f}(k+1)=2^{2(k+1)-1}+3^{2(k+1)-1}+2^{2 k-1}+3^{2 k-1}-\left(2^{2 k-1}+3^{2 k-1}\right)$	A1: Correct expression for $\underline{\mathrm{f}(k+1)}$ (Can be unsimplified)	M1A1
	$=4\left(2^{2 k-1}\right)+9\left(3^{2 k-1}\right)+2^{2 k-1}+3^{2 k-1}-\left(2^{2 k-1}+3^{2 k-1}\right)$	Achieves an expression in $2^{2 k-1}$ and $3^{2 k-1}$	M1
	$=5\left(2^{2 k-1}\right)+10\left(3^{2 k-1}\right)-\left(2^{2 k-1}+3^{2 k-1}\right)$		
	$=5\left(\left(2^{2 k-1}\right)+2\left(3^{2 k-1}\right)\right)-\left(2^{2 k-1}+3^{2 k-1}\right)$		
	$=5\left(\left(2^{2 k-1}\right)+2\left(3^{2 k-1}\right)\right)-\mathrm{f}(k)$ or $5\left(\left(2^{2 k-1}\right)+2\left(3^{2 k-1}\right)\right)-\left(2^{2 k-1}+3^{2 k-1}\right)$	Where $\mathrm{f}(k+1)$ is correct and is clearly a multiple of 5 .	A1
	If the result is true for $n=k$, then it is now true for $n=k+1$. As the result has shown to be true for $n=1$, then the result is true for all n.	Correct conclusion at the end, at least as given, and all previous marks scored.	$\begin{aligned} & \text { A1 } \\ & \text { cso } \end{aligned}$
			[6]
			$\begin{gathered} \hline 6 \\ \text { marks } \end{gathered}$

