1 The diagram shows $\triangle A B C$ with $A C=8 x-3, B C=4 x-1, \angle A B C=120^{\circ}$ and $\angle A C B=15^{\circ}$.
Figure 1

a Show that the exact value of x is $\frac{9+\sqrt{6}}{20}$.
(7 marks)
b Find the area of $\triangle A B C$ giving your answer to 2 decimal places.

2 The diagram shows the position of three boats, P, Q and R. Boat Q is 7 km from boat P on a bearing of 327°. Boat R is 15 km from boat P on a bearing of 041°.

Figure 2

a Find the distance between boats Q and R to 1 decimal place.
b Find the 3 figure bearing of boat R from boat Q.

3 Find all the solutions, in the interval $0 \leqslant x \leqslant 360^{\circ}$, to the equation $8-7 \cos x=6 \sin ^{2} x$, giving solutions to 1 decimal place where appropriate.

4 a Calculate the value of $-2 \tan \left(-120^{\circ}\right)$.
b On the same set of axes sketch the graphs of $y=2 \sin \left(x-60^{\circ}\right)$ and $y=-2 \tan x$, in the interval $-180^{\circ} \leqslant x \leqslant 180^{\circ}$, showing the coordinates of points of intersection with the coordinate axes in exact form.
c Explain how you can use the graph to identify solutions to the equations $y=2 \sin \left(x-60^{\circ}\right)+2 \tan x=0$ in the interval $-180^{\circ} \leqslant x \leqslant 180^{\circ}$.
d Write down the number of solutions of the equation $y=2 \sin \left(x-60^{\circ}\right)+2 \tan x=0$ in the interval $-180^{\circ} \leqslant x \leqslant 180^{\circ}$.

5 Find, to 1 decimal place, the values of θ in the interval $0 \leqslant \theta \leqslant 180^{\circ}$ for which $4 \sqrt{3} \sin \left(3 \theta+20^{\circ}\right)=4 \cos \left(3 \theta+20^{\circ}\right)$.

6 A teacher asks one of her students to solve the equation $2 \cos 2 x+\sqrt{3}=0$ for $0 \leqslant x \leqslant 180^{\circ}$. The attempt is shown below.
$2 \cos 2 x=-\sqrt{3}$
$\cos 2 x=-\frac{\sqrt{3}}{2}$
$2 x=\cos ^{-1}\left(-\frac{\sqrt{3}}{2}\right)$
$2 x=150^{\circ}$
$x=75^{\circ}$
w or $x=360^{\circ}-75^{\circ}=295^{\circ}$ so reject as out of range.
a Identify the mistake made by the student.
(1 mark)
b Write down the correct solutions to the equation.

7 A buoy is a device which floats on the surface of the sea and moves up and down as waves pass. For a certain buoy, its height, above its position in still water, y in metres, is modelled by a sine function of the form $y=\frac{1}{2} \sin \left(180 t^{\circ}\right)$, where t is the time in seconds.
a Sketch a graph showing the height of the buoy above its still water level for $0 \leqslant t \leqslant 10$ showing the coordinates of points of intersection with the t-axis.
b Write down the number of times the buoy is 0.4 m above its still water position during the first 10 seconds.
c Give one reason why this model might not be realistic.

