3D Vectors

$$
\begin{aligned}
& \underline{a}=3 \underline{i}+4 j+5 \underline{j} \\
& |\underline{a}|=\sqrt{3^{2}+4^{2}+5^{2}}=\sqrt{50}
\end{aligned}
$$

Position vector of $A(3,4,5)$

$$
=3 \underline{i}+4 j+5 \underline{k}=\left(\begin{array}{l}
3 \\
4 \\
5
\end{array}\right)
$$

measured from an origin $O(0,0,0)$

Finding angles between vectors

$$
\begin{array}{ll}
A(3,4,5) & \text { Find } \angle A B C \\
B(6,-7,1) & B(6,-7,1)
\end{array}
$$

$$
A(3,4,5)
$$

$$
\begin{aligned}
& |A B|=\sqrt{(6-3)^{2}+(-7-4)^{2}+(1-5)^{2}}=\sqrt{9+121+16}=\sqrt{146} \\
& |B C|=\sqrt{(6-4)^{2}+(-2-1)^{2}+(1--3)^{2}}=\sqrt{4+64+16}=\sqrt{84} \\
& |A C|=\sqrt{(3-4)^{2}+(4-1)^{2}+(5--3)^{2}}=\sqrt{1+9+64}=\sqrt{74}
\end{aligned}
$$

$$
\begin{aligned}
\cos \angle A B C & =\frac{84+146-74}{2 \sqrt{146} \sqrt{84}}=\frac{156}{2 \sqrt{12264}} \\
\cos \angle A B C & =0.7043 \\
\angle A B C & =45.2^{\circ}
\end{aligned}
$$

Off Syllabus
Scalar Product

$$
\text { If } \underline{a}=\left(\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) \quad \text { and } \quad \underline{b}=\left(\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)
$$

The scalar product or dot product of a and b written as $a . b$ is given by

$$
\underline{a} \cdot \underline{b}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

The angle between two vectors a and b can be found by

$$
\cos \theta=\frac{\underline{a} \cdot \underline{b}}{|\underline{a}||\underline{b}|}
$$

Going back to our first example

$$
\begin{aligned}
\overrightarrow{B A}=\left(\begin{array}{c}
-3 \\
11 \\
4
\end{array}\right) & \overrightarrow{B C}=\left(\begin{array}{c}
-2 \\
8 \\
-4
\end{array}\right) \\
\cos \angle A B C & =\frac{\left(\begin{array}{c}
-3 \\
11 \\
4
\end{array}\right) \cdot\left(\begin{array}{c}
-2 \\
8 \\
-4
\end{array}\right)}{\left|\left(\begin{array}{c}
-3 \\
11 \\
4
\end{array}\right)\right|\left|\left(\begin{array}{c}
-2 \\
8 \\
-4
\end{array}\right)\right|} \\
& =\frac{+6+88-16}{\sqrt{9+121+16} \sqrt{4+64+16}} \\
& =\frac{78}{\sqrt{146} \sqrt{84}} \\
\angle O S \angle A B C & \cos ^{-1}\left(\frac{78}{\sqrt{146} \sqrt{84}}\right)
\end{aligned}
$$

Finding the vector $\overrightarrow{A B}$

$$
\begin{aligned}
\overrightarrow{A B} & =\overrightarrow{A O}+\overrightarrow{O B} \\
& =\left(\begin{array}{c}
-3 \\
-4 \\
-5
\end{array}\right)+\left(\begin{array}{c}
6 \\
-7 \\
1
\end{array}\right)=\left(\begin{array}{c}
3 \\
-11 \\
-4
\end{array}\right)
\end{aligned}
$$

