| Leave |  |
|-------|--|
| hlank |  |

| 8. | The | equation |
|----|-----|----------|
|----|-----|----------|

$$x^2 + kx + 8 = k$$

has no real solutions for x.

(a) Show that k satisfies  $k^2 + 4k - 32 \le 0$ .

**(3)** 

(b) Hence find the set of possible values of k.

**(4)** 

| (a) show that $q^2 + 8q < 0$ .                     |     |
|----------------------------------------------------|-----|
| (a) Show that $q + \delta q < 0$ .                 | (2) |
| (b) Hence find the set of possible values of $q$ . |     |
|                                                    | (3) |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |

| Leave |  |
|-------|--|
| blank |  |

| 7. | The equation $kx^2 + 4x + (5 - k) = 0$ , | where $k$ is a constant, | has 2 | different r | real | solutions |
|----|------------------------------------------|--------------------------|-------|-------------|------|-----------|
|    | for x.                                   |                          |       |             |      |           |

(a) Show that k satisfies

$$k^2 - 5k + 4 > 0.$$

**(3)** 

| (b) Hence find the set of possible values of $k$ . | (4) |
|----------------------------------------------------|-----|
|                                                    | (-) |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |
|                                                    |     |



| Find the value of $p$ . |     |
|-------------------------|-----|
| I ma are value of p.    | (4) |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |
|                         |     |



Leave blank

| 10. $f(x) = x^2 + 4kx + (3+11k)$ , where k is | a constant. |
|-----------------------------------------------|-------------|
|-----------------------------------------------|-------------|

(a) Express f(x) in the form  $(x+p)^2+q$ , where p and q are constants to be found in terms of k.

**(3)** 

Given that the equation f(x) = 0 has no real roots,

(b) find the set of possible values of k.

**(4)** 

Given that k = 1,

(c) sketch the graph of y = f(x), showing the coordinates of any point at which the graph crosses a coordinate axis.

**(3)** 

| Leave |  |
|-------|--|
| blank |  |

(a) Show that  $x^2 + 6x + 11$  can be written as

$$(x+p)^2+q$$

where p and q are integers to be found.

**(2)** 

(b) In the space at the top of page 7, sketch the curve with equation  $y = x^2 + 6x + 11$ , showing clearly any intersections with the coordinate axes.

**(2)** 

| (c) Find the value of the discriminant of $x^2 + 6x + 11$ | (3 |
|-----------------------------------------------------------|----|
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |
|                                                           |    |

