

Chapter 1

Algebraic Methods
1.1 Proof by Contradiction

Negation of Statements

P 1 Select the statement that is the negation of 'All multiples of three are even'.
A All multiples of three are odd.
B At least one multiple of three is odd.
C No multiples of three are even.

Proof by Contradiction
(P) 3 Statement: If n^{2} is odd then n is odd.
a Write down the negation of this statement.
b Prove the original statement by contradiction.

In this question n is an integer
a) There is at least one value of n Such that n is even and n^{2} is odd
b) Given n^{2} is odd assume n is even

$$
\begin{aligned}
& n \text { even } \Rightarrow n=2 k \quad \begin{array}{l}
\text { for some } \\
\text { integer } k
\end{array} \\
& n^{2}=(2 k)^{2}=4 k^{2} \\
& n^{2}=2\left(2 k^{2}\right) \\
& n^{2} \text { is even Contradiction } \\
& \therefore n \text { is odd }
\end{aligned}
$$

Let A be a rational number
Let B be an irrational number
Suppose A + B = C
Prove C is irrational
A can be written as $\frac{p}{q} \quad p, q$ integers B cannot be written in this way

Assume C is rational

$$
\begin{aligned}
& \therefore C=\frac{h}{k} \quad \text { for } h \text { integers } \\
\Rightarrow & \frac{p}{q}+B=\frac{h}{k} \\
\Rightarrow & B=\frac{h}{k}-\frac{p}{q}=\frac{h q-p k}{k q}=\frac{a_{n} \text { integer }}{a_{n} \text { integer }}
\end{aligned}
$$

$\Rightarrow B$ is rational Contradiction
$\therefore C$ is irrational since assumption wrong

