1 The position vector, \mathbf{r}, of a particle of mass 4 kg at time t is given by

$$
\mathbf{r}=t^{2} \mathbf{i}+\left(5 t-2 t^{2}\right) \mathbf{j}
$$

where \mathbf{i} and \mathbf{j} are the standard unit vectors, lengths are in metres and time is in seconds.
(i) Find an expression for the acceleration of the particle.

The particle is subject to a force F and a force 12 j N .
(ii) Find \mathbf{F}.

3 A particle rests on a smooth, horizontal plane. Horizontal unit vectors \mathbf{i} and \mathbf{j} lie in this plane. The particle is in equilibrium under the action of the three forces $(-3 \mathbf{i}+4 \mathbf{j}) \mathrm{N}$ and $(21 \mathbf{i}-7 \mathbf{j}) \mathrm{N}$ and $\mathbf{R N}$.
(i) Write down an expression for \mathbf{R} in terms of \mathbf{i} and \mathbf{j}.
(ii) Find the magnitude of \mathbf{R} and the angle between \mathbf{R} and the \mathbf{i} direction.

5 The position vector of a particle at time t is given by

$$
\mathbf{r}=\frac{1}{2} t \mathbf{i}+\left(t^{2}-1\right) \mathbf{j}
$$

referred to an origin \mathbf{O} where \mathbf{i} and \mathbf{j} are the standard unit vectors in the directions of the cartesian axes $\mathrm{O} x$ and $O y$ respectively.
(i) Write down the value of t for which the x-coordinate of the position of the particle is 2 . Find the y-coordinate at this time.
(ii) Show that the cartesian equation of the path of the particle is $y=4 x^{2}-1$.
(iii) Find the coordinates of the point where the particle is moving at 45° to both $\mathrm{O} x$ and $\mathrm{O} y$.

3 A force \mathbf{F} is given by $\mathbf{F}=(3.5 \mathbf{i}+12 \mathbf{j}) \mathrm{N}$, where \mathbf{i} and \mathbf{j} are horizontal unit vectors east and north respectively.
(i) Calculate the magnitude of \mathbf{F} and also its direction as a bearing.
(ii) \mathbf{G} is the force $(7 \mathbf{i}+24 \mathbf{j}) \mathrm{N}$. Show that \mathbf{G} and \mathbf{F} are in the same direction and compare their magnitudes.
(iii) Force \mathbf{F}_{1} is $(9 \mathbf{i}-18 \mathbf{j}) \mathrm{N}$ and force \mathbf{F}_{2} is $(12 \mathbf{i}+q \mathbf{j}) \mathrm{N}$. Find q so that the sum $\mathbf{F}_{1}+\mathbf{F}_{2}$ is in the direction of \mathbf{F}.

5 The acceleration of a particle of mass 4 kg is given by $\mathbf{a}=(9 \mathbf{i}-4 t \mathbf{j}) \mathrm{m} \mathrm{s}^{-2}$, where \mathbf{i} and \mathbf{j} are unit vectors and t is the time in seconds.
(i) Find the acceleration of the particle when $t=0$ and also when $t=3$.
(ii) Calculate the force acting on the particle when $t=3$.

The particle has velocity $(4 \mathbf{i}+2 \mathbf{j}) \mathrm{m} \mathrm{s}^{-1}$ when $t=1$.
(iii) Find an expression for the velocity of the particle at time t.

2 Force \mathbf{F}_{1} is $\binom{-6}{13} \mathrm{~N}$ and force \mathbf{F}_{2} is $\binom{-3}{5} \mathrm{~N}$, where $\binom{1}{0}$ and $\binom{0}{1}$ are vectors east and north respectively.
(i) Calculate the magnitude of \mathbf{F}_{1}, correct to three significant figures.
(ii) Calculate the direction of the force $\mathbf{F}_{1}-\mathbf{F}_{2}$ as a bearing.

Force \mathbf{F}_{2} is the resultant of all the forces acting on an object of mass 5 kg .
(iii) Calculate the acceleration of the object and the change in its velocity after 10 seconds.

4 Fig. 4 shows the unit vectors \mathbf{i} and \mathbf{j} in the directions of the cartesian axes $\mathrm{O} x$ and $\mathrm{O} y$, respectively. O is the origin of the axes and of position vectors.

Fig. 4
The position vector of a particle is given by $\mathbf{r}=3 t \mathbf{i}+\left(18 t^{2}-1\right) \mathbf{j}$ for $t \geqslant 0$, where t is time.
(i) Show that the path of the particle cuts the x-axis just once.
(ii) Find an expression for the velocity of the particle at time t.

Deduce that the particle never travels in the \mathbf{j} direction.
(iii) Find the cartesian equation of the path of the particle, simplifying your answer.

