Introduction to Algebraic Proof

1) Prove odd + odd $=$ even

Let In^{2} be an even integer where n is an integer
$2 n+1$ is an odd integer
$2 m+1$ is an odd integer where m intego

$$
\begin{aligned}
& \text { odd todd } \\
& \begin{aligned}
2 n+1+2 m+1 & =2 n+2 m+2 \\
& =2(n+m+1)
\end{aligned}
\end{aligned}
$$

2 is a factor
\therefore even
2)

$$
\begin{aligned}
\text { even +odd } & =\text { odd } \\
2 n+2 m+1 & =2 n+2 n+1 \\
3 \& 5 & \\
378 &
\end{aligned}
$$

$$
n \quad n+1 \quad n+2
$$

Prove the sum of 3 consecutive integers is divisible by 3

$$
\begin{aligned}
n+n+1+n+2 & =3 n+3 \\
& =3(n+1)
\end{aligned}
$$

\therefore a moltiple of 3

