Name: Solutions

Year 10 Higher assessment 3

Date:

Time: 55 Minutes
Total marks available: 50
Total marks achieved: \qquad

Questions

Q1.

x	-2	-1	0	1	2	3
y	-2	$-\frac{3}{2}$	-1	$-\frac{1}{2}$	0	$\frac{1}{2}$

(b) On the grid, draw the graph of $y=\frac{1}{2} x-1 \quad$ for values of x from -2 to 3

(c) Use your graph to find the value of x when $y=0.3$

$$
x=\ldots \quad 2.6
$$

Q2.
The diagram shows a straight line, L_{1}, drawn on a grid.

A straight line, L_{2}, is parallel to the straight line L_{1} and passes through the point $(0,-5)$.
Find an equation of the straight line L_{2}. Gradient of $L_{1}=\frac{2}{4}=\frac{1}{2}$
so gradient of $L_{2}=\frac{1}{2}$

$$
\begin{aligned}
& y=\frac{1}{2} x+c \quad(0,-5) \text { on line } \\
& -5=0+c \\
& -5=c
\end{aligned}
$$

$$
y=\frac{1}{2} x-5
$$

(Total for Question is 3 marks)

Qu.
The equation of the line L_{1} is

$$
y=3 x-2
$$

The equation of the line L_{2} is

$$
3 y-9 x+5=0
$$

Show that these two lines are parallel.

$$
\begin{aligned}
& y=3 x-2 \\
& \text { gradient }=3
\end{aligned}
$$

$$
\begin{gathered}
3 y-9 x+5=0 \\
y-3 x+\frac{5}{3}=0 \\
y=3 x-\frac{5}{3} \\
\text { gradient }=3
\end{gathered}
$$

Equal gradients so they are parallel

Qu.

$$
=\frac{-6--2}{-3-5}=\frac{-4}{-8}=+\frac{1}{2}
$$

A triangle has vertices P, Q and R.
The coordinates of P are ($-3,-6$)
The coordinates of Q are $(1,4)$
The coordinates of R are $(5,-2)$
M is the midpoint of $P Q$. N is the midpoint of $Q R$.

$$
\begin{aligned}
& M=\left(\frac{-3+1}{2}, \frac{-6+4}{2}\right)=\left(\frac{-2}{2}, \frac{-2}{2}\right)=(-1,-1) \\
& N=\left(\frac{1+5}{2}, \frac{4+-2}{2}\right)=\left(\frac{6}{2}, \frac{2}{2}\right)=(3,1)
\end{aligned}
$$

Prove that $M N$ is parallel to $P R$.
You must show each stage of your working.
Gradient of MN

$$
=\frac{1--1}{3--1}=\frac{2}{4}=\frac{1}{2}
$$

Equal gradients so parallel

Q5.

The straight line \mathbf{L} has equation $4 x+y=7$
Find an equation of the straight line perpendicular to L that passes through $(-8,3)$.

$$
\begin{array}{rl}
\text { L } y & =-4 x+7 \quad \text { gradient }=-4 \\
\text { Perpendicular gradient }=+\frac{1}{4} \\
y & =\frac{1}{4} x+c \quad \text { through }(-8,3) \\
3 & =\frac{1}{4}(-8)+c \\
3 & =-2+c \\
3+2 & =c \\
5 & =c \\
y & y=\frac{1}{4} x+5
\end{array}
$$

Qb.
(a) Show the inequality $x<3$ on the number line below.

(b) Solve the inequality $4 x-7 \geq 13$

$$
\begin{gather*}
4 x \geqslant 13+7 \\
4 x \geqslant 20 \\
x \geqslant \frac{20}{4} \tag{2}\\
x \geqslant 5
\end{gather*}
$$

Q7.

This graph can be used to convert between degrees Celsius (C) and degrees Fahrenheit (F).

Find the values of m and k such that

$$
\begin{aligned}
& \text { gradient }=\frac{18}{10}=\frac{9^{F=m c+k}}{5} \\
& \text { vertical intercept }=32
\end{aligned}
$$

Q8.

(a) On the grid, reflect shape \mathbf{A} in the line $y=x$.

(b) Describe fully the single transformation that maps triangle \mathbf{B} onto triangle \mathbf{C}.

Translation by $\binom{4}{-1}$
-

Q9.

Triangle A is rotated 90° clockwise about the point $(0,1)$ to give triangle \mathbf{B}.
Triangle B is translated by the vector $\binom{-3}{-1}$ to give triangle \mathbf{C}. Describe fully the single transformation that maps triangle \mathbf{A} onto triangle \mathbf{C}.

Rotation by 90° clockwise about $(-2,2)$...

Q10.

Enlarge shape \mathbf{P} by scale factor $-\frac{1}{2}$ with centre of enlargement $(0,0)$.
Label your image \mathbf{Q}.

Q11.

3 teas and 2 coffees have a total cost of $£ 7.80$ 5 teas and 4 coffees have a total cost of $£ 14.20$

Work out the cost of one tea and the cost of one coffee.

$$
\begin{align*}
& 3 t+2 c=7.80 \tag{1}\\
& 5 t+4 c=14.20 \tag{2}
\end{align*}
$$

(1) $\times 2 \quad 6 t+4 c=15.60$
(3)-(2) $t=1.40$

Sub for t in (1)

$$
\begin{aligned}
3(1.40)+2 c & =7.80 \\
4.20+2 c & =7.80 \\
2 c & =7.80-4.20 \\
2 c & =3.60 \\
c & =\frac{3.60}{2}=1.80
\end{aligned}
$$

(Total for question = 4 marks)

Q12.
Solve the equations

$$
\begin{align*}
& 3 x+2 y=8 \tag{1}\\
& 2 x+4 y=4
\end{align*}
$$

(1) $\times 2$

$$
\begin{equation*}
6 x+4 y=16 \tag{3}
\end{equation*}
$$

(3)-(2)

$$
\begin{aligned}
4 x & =12 \\
x & =\frac{12}{4} \\
x & =3
\end{aligned}
$$

Sub for x in (1)

$$
\begin{aligned}
3(3)+2 y & =8 \\
9+2 y & =8 \\
2 y & =8-9 \\
2 y & =-1 \\
y & =-\frac{1}{2} \quad x=3, y=-\frac{1}{2} \\
& \text { (Total for Question is } 4 \text { marks) }
\end{aligned}
$$

Q13.
m is an integer such that $-2<m \leq 3$
(a) Write down all the possible values of m.

$$
\begin{equation*}
m=-1,0,1,2,3 \tag{2}
\end{equation*}
$$

(b) Solve $7 x-9<3 x+4$

$$
\begin{align*}
7 x-3 x & <4+9 \\
4 x & <13 \\
x & <\frac{13}{4} \tag{2}
\end{align*}
$$

Q14.

On the grid below, show by shading, the region defined by the inequalities

$$
x+y<6 \quad x>-1 \quad y>2
$$

Mark this region with the letter R.

(Total for Question is 4 marks)

