Jun05

(a) (i)	H ₀ : $\mu = 166500$; H ₁ : $\mu > 166500$ Where μ denotes the mean selling price in pounds of the population of houses on the large estate	B1 for both correct B1 for definition of μ	2
(ii)	$n = 6, \Sigma x = 1018500, \overline{x} = \pounds 169750$	BICAO	
	Test statistic = $\frac{169750 - 166500}{14200 / \sqrt{6}} = \frac{3250}{5797}$ = 0.5606	M1 must include √6 A1FT	
	5% level 1 tailed critical value of $z = 1.645$ 0.5606 < 1.645 so not significant. There is insufficient evidence to reject H ₀	B1 for 1.645 M1 for comparison leading to a conclusion	6
	It is reasonable to conclude that houses on this estate are not more expensive than in the rest of the suburbs.	A1 for conclusion in words in context	

(iv)	H ₀ : $\mu = 18.3$; H ₁ : $\mu \neq 18.3$ Where μ denotes the mean travel time by car for the whole population. Toot statistic $z = \frac{22.4 - 18.3}{4.1} = \frac{4.1}{4.1}$	B1 for both correct B1 for definition of μ M1 (standardizing	
	Test statistic $z = \frac{22.4 - 18.3}{8.0 / \sqrt{20}} = \frac{4.1}{1.789}$ = 2.292	sample mean) A1 for test statistic	
	10% level 2 tailed critical value of z is 1.645 2.292 > 1.645 so significant. There is evidence to reject H_0 It is reasonable to conclude that the mean travel time by car is different from that by bus.	B1 for 1.645 M1 for comparison leading to a conclusion A1 for conclusion in words and context	7
(v)	The test suggests that students who travel by bus get to school more quickly.		
	This may be due to their journeys being over a shorter distance.		
	It may be due to bus lanes allowing buses to avoid congestion.		
	It is possible that the test result was incorrect (ie implication of a Type I error).	E1, E1 for any two valid comments	2
	More investigation is needed before any firm conclusion can be reached.		18

(ii)	H ₀ : μ = 67.4; H ₁ : μ >67.4 Where μ denotes the mean score of the population of students taught with the new method.	B1 for both correct B1 for definition of μ	
	Test statistic = $\frac{68.3 - 67.4}{8.9 / \sqrt{12}} = \frac{0.9}{2.57}$ = 0.35	M1 A1 cao	
	10% level 1 tailed critical value of $z = 1.282$ 0.35 < 1.282 so not significant. There is insufficient evidence to reject H ₀ There is insufficient evidence to conclude that the mean score is increased by the new teaching method.	B1 for 1.282 M1 for comparison A1 for conclusion in words and in context	7
			19

(ii)	Test statistic = $\frac{49.2 - 47}{8.5/\sqrt{50}} = \frac{2.2}{1.202} = 1.830$	M1 correct denominator A1	
	1% level 1 tailed critical value of $z = 2.326$ 1.830 < 2.326 so not significant. There is not sufficient evidence to reject H ₀	B1 for 2.326 M1 (dep on first M1) for sensible comparison leading to a conclusion	
	There is insufficient evidence to conclude that the flowers are larger.	A1 for fully correct conclusion in words in context	5
		TOTAL	17

(i)	$X \sim N(49.7, 1.6^2)$		
	(A) $P(X > 51.5) = P\left(Z > \frac{51.5 - 49.7}{1.6}\right)$	M1 for standardizing	
	= P(Z > 1.125)	M1 for prob. calc.	
	$= 1 - \Phi(1.125) = 1 - 0.8696 = 0.1304$	A1 (at least 2 s.f.)	
	(B) $P(X < 48.0) = P\left(Z < \frac{48.0 - 49.7}{1.6}\right)$ = $P(Z < -1.0625) = 1 - \Phi(1.0625)$	M1 for appropriate	
	= 1 - 0.8560 = 0.1440	prob' calc.	5
	P(48.0 < X < 51.5) = 1 - 0.1304 - 0.1440 = 0.7256	A1 (0.725 – 0.726)	
(ii)	P(one over 51.5, three between 48.0 and 51.5)		
	$= \begin{pmatrix} 4 \\ 1 \end{pmatrix} \times 0.7256 \times 0.2744^3 = 0.0600$	M1 for coefficient M1 for 0.7256 × 0.2744 ³	
		A1 FT (at least 2 sf)	3
(iii)	From tables, Φ ⁻¹ (0.60) = 0.2533, Φ ⁻¹ (0.30) = -0.5244	B1 for 0.2533 or 0.5244 seen M1 for at least one	
	$49.0 = \mu + 0.2533 \sigma$	correct equation $\mu \& \sigma$	
	$47.5 = \mu - 0.5244 \sigma$		
	1.5 = 0.7777 <i>σ</i>	M1 for attempt to solve two correct	
	σ = 1.929, μ = 48.51	equations A1 CAO for both	4
(iv)	Where μ denotes the mean circumference of the entire population of organically fed 3-year-old boys.	E1	
	<i>n</i> = 10,		
	Test statistic Z = $\frac{50.45 - 49.7}{1.6 / \sqrt{10}} = \frac{0.75}{0.5060} = 1.482$	M1 A1(at least 3sf)	
	10% level 1 tailed critical value of <i>z</i> is 1.282	B1 for 1.282	
	1.482 > 1.282 so significant.	M1 for comparison leading to a conclusion	
	There is sufficient evidence to reject H_0 and conclude that organically fed 3-year-old boys have a higher mean head circumference.	A1 for conclusion in context	6
			18

Que	stion 2		
(a)	<i>X</i> ~ N(28,16)		
(i)	$P(24 < X < 33) = P\left(\frac{24 - 28}{4} < Z < \frac{33 - 28}{4}\right)$	M1 for standardizing	
	= P(-1 < Z < 1.25)	A1 for 1. 25 and -1	
	$= \Phi(1.25) - (1 - \Phi(1))$	M1 for prob. with tables	
	= 0.8944 - (1 - 0.8413)	and correct structure	
	= 0.8944 - 0.1587	A1 CAO (min 3 s.f., to include use of difference	
	= 0.7357 (4 s.f.) <i>or</i> 0.736 (to 3 s.f.)	column)	4
(ii)	25000 ×0.7357 ×0.1 = £1839	M1 for either product, (with	
	25000 ×0.1587 ×0.05 = £198	or without price) M1 for sum of both	
	Total = £1839 + £198 = £2037	products with price	
		A1 CAO awrt £2040	3
(iii)	$X \sim N(k, 16)$	B1 for ±1.645 seen	
()	From tables $\Phi^{-1}(0.95) = 1.645$		
	$\frac{33-k}{4} = 1.645$	M1 for correct equation in k	
	4	with positive z-value	
	$33 - k = 1.645 \times 4$		
	<i>k</i> = 33 – 6.58	A1 CAO	
	<i>k</i> = 26.42 (4 s.f.) <i>or</i> 26.4 (to 3 s.f.)		3
			Ŭ
(b)		B1 for both correct & ito μ	
(i)	$H_0: \mu = 0.155; H_1: \mu > 0.155$		
	Where μ denotes the mean weight in kilograms of the population of onions of the new variety	B1 for definition of μ	2
	population of onions of the new variety		2
(ii)	Mean weight = 4.77/25 = 0.1908	B1	
(")	0.1908 - 0.155 0.0358	M1 must include √25	
	Test statistic = $\frac{0.0000}{\sqrt{0.005}/\sqrt{25}} = \frac{0.00000}{0.01414}$		
	= 2.531	A1FT	
	1% level 1-tailed critical value of $z = 2.326$	B1 for 2.326 M1 For sensible	
	2.531 > 2.236 so significant. There is sufficient evidence to reject H_0	comparison leading to a	
	······································	conclusion	
	It is reasonable to conclude that the new variety has a	A1 for correct, consistent	
	higher mean weight.	conclusion in words and in	
		context	6
			18

(i)	$X \sim N(11,3^2)$		
	$P(X < 10) = P\left(Z < \frac{10-11}{3}\right)$	M1 for standardizing	
	= P(Z < -0.333)	M1 for use of tables with	
	$= \Phi(-0.333) = 1 - \Phi(0.333)$	their z-value M1 <i>dep</i> for correct tail	
	= 1 - 0.6304 = 0.3696	A1CAO (must include use of differences)	4
(ii)	P(3 of 8 less than ten)		
	$= \binom{8}{3} \times 0.3696^3 \times 0.6304^5 = 0.2815$	M1 for coefficient M1 for $0.3696^3 \times 0.6304^5$ A1 FT (min 2sf)	3
(iii)	$\mu = np = 100 \times 0.3696 = 36.96$ $\sigma^{2} = npq = 100 \times 0.3696 \times 0.6304 = 23.30$ $Y \sim N(36.96, 23.30)$	M1 for Normal approximation with correct (FT) parameters	
	$P(Y \ge 50) = P\left(Z > \frac{49.5 - 36.96}{\sqrt{23.30}}\right)$ = P(Z > 2.598) = 1 - $\Phi(2.598)$ = 1 - 0.9953 = 0.0047	B1 for continuity corr. M1 for standardizing and using correct tail A1 CAO (FT 50.5 or omitted CC)	4
(iv)	H ₀ : $\mu = 11$; H ₁ : $\mu > 11$ Where μ denotes the mean time taken by the new hairdresser	B1 for H_{0} as seen. B1 for H_1 , as seen. B1 for definition of μ	3
(v)	Test statistic = $\frac{12.34 - 11}{3/\sqrt{25}} = \frac{1.34}{0.6}$ = 2.23	M1 must include $\sqrt{25}$ A1 (FT their μ)	
	5% level 1 tailed critical value of $z = 1.645$ 2.23 > 1.645, so significant. There is sufficient evidence to reject H ₀	B1 for 1.645 M1 for sensible comparison leading to a conclusion	
	It is reasonable to conclude that the new hairdresser does take longer on average than other staff.	A1 for conclusion in words in context (FT their μ)	5
			19
L	1	1	1

(i)	$X \sim N(27500,4000^2)$ P(X >25000) = P $\left(Z > \frac{25000 - 27500}{4000}\right)$	M1 for standardising	
	= P(Z > -0.625) = $\Phi(0.625) = 0.7340 (3 \text{ s.f.})$	A1 for -0.625 M1 <i>dep</i> for correct tail A1CAO (must include use of differences)	4
(ii)	P(7 of 10 last more than 25000) = $\binom{10}{7} \times 0.7340^7 \times 0.2660^3 = 0.2592$	M1 for coefficient M1 for $0.7340^7 \times 0.2660^3$ A1 FT (min 2sf)	3
(iii)	From tables $\Phi^{-1}(0.99) = 2.326$ $\frac{k - 27500}{4000} = -2.326$ $x = 27500 - 2.326 \times 4000 = 18200$	B1 for 2.326 seen M1 for equation in <i>k</i> and negative z-value A1 CAO for awrt 18200	3
(iv)	H ₀ : μ = 27500; H ₁ : μ > 27500 Where μ denotes the mean lifetime of the new tyres.	B1 for use of 27500 B1 for both correct B1 for definition of μ	3
(v)	Test statistic = $\frac{28630 - 27500}{4000/\sqrt{15}} = \frac{1130}{1032.8}$ = 1.094 5% level 1 tailed critical value of <i>z</i> = 1.645 1.094 < 1.645 so not significant. There is not sufficient evidence to reject H ₀ There is insufficient evidence to conclude that the new tyres last longer.	 M1 must include √ 15 A1 FT B1 for 1.645 M1 <i>dep</i> for a sensible comparison leading to a conclusion A1 for conclusion in words in context 	5
			18

Mark Scheme

Question 3

(i)	$X \sim N(1720,90^2)$		
	$P(X < 1700) = P\left(Z < \frac{1700 - 1720}{90}\right)$	M1 for standardising A1	
	= $P(Z < -0.2222)$ = $\Phi(-0.2222) = 1 - \Phi(0.2222)$	M1 use of tables (correct tail)	
	= 1 – 0.5879	A1CAO	4
	= 0.4121	NB ANSWER GIVEN	4
(ii)	P(2 of 4 below 1700) = $\binom{4}{2} \times 0.4121^2 \times 0.5879^2 = 0.3522$	M1 for coefficient M1 for 0.4121 ² ×	
		0.5879 ² A1 FT (min 2sf)	3
(iii)	Normal approx with $\mu = np = 40 \times 0.4121 = 16.48$ $\sigma^2 = npq = 40 \times 0.4121 \times 0.5879 = 9.691$ $P(X \ge 20) = P\left(Z \ge \frac{19.5 - 16.48}{\sqrt{9.691}}\right)$	B1 B1 B1 for correct continuity corr.	5
	$P(X \ge 20) = P(Z \ge \frac{\sqrt{9.691}}{\sqrt{9.691}})$ = P(Z \ge 0.9701) = 1 - $\Phi(0.9701)$ = 1 - 0.8340 = 0.1660	M1 for correct Normal probability calculation using correct tail A1 CAO, (but FT wrong or omitted CC)	5
(iv)	H ₀ : μ = 1720; H ₁ is of this form since the consumer organisation suspects that the mean is below 1720 μ denotes the mean intensity of 25 Watt low energy bulbs made by this manufacturer.	B1 E1 B1 for definition of <i>µ</i>	3
(v)	Test statistic = $\frac{1703 - 1720}{90/\sqrt{20}} = \frac{-17}{20.12}$ = -0.8447	M1 must include √20 A1FT	
	Lower 5% level 1 tailed critical value of $z = -1.645$	B1 for –1.645 No FT from here if wrong. Must be –1.645 unless it is clear that absolute	
	-0.8447 > -1.645 so not significant. There is not sufficient evidence to reject H ₀	values are being used. M1 for sensible comparison leading to a conclusion. FT only candidate's test	5
	There is insufficient evidence to conclude that the mean intensity of bulbs made by this manufacturer is less than 1720	statistic A1 for conclusion in words in context	
		TOTAL	20

4767

 (iv)	H ₀ : $\mu = 32.8$; H ₁ : $\mu < 32.8$ Where μ denotes the population mean weight of rubbish in the bins. Test statistic = $\frac{30.9 - 32.8}{3.4/\sqrt{50}} = -\frac{1.9}{0.4808} = -3.951$	B1 for use of 32.8 B1 for both correct B1 for definition of μ M1 must include $\sqrt{50}$ A1		-
	5% level 1 tailed critical value of $z = -1.645$	B1 for ±1.645		
	$-3.951 \le -1.645$ so significant. There is sufficient evidence to reject H ₀	M1 for sensible comparison leading to a conclusion		
	There is evidence to suggest that the weight of rubbish in dustbins has been reduced.	A1 for conclusion in words in context	[8]	
		TOTAL	[18]	