Trapezium Rule
Exact Area

$$
\begin{aligned}
A & =\int_{1}^{4} x^{2} d x \\
& =\left[\frac{x^{3}}{3}\right]_{1}^{4} \\
& =\frac{4^{3}}{3}-\frac{1^{3}}{3}=21
\end{aligned}
$$

Area of Trapezium $=\frac{1}{2}(a+s) h$

$$
\begin{aligned}
\text { Ares } & =\frac{1}{2}\left(y_{0}+y_{1}\right) h+\frac{1}{2}\left(y_{1}+y_{2}\right) h+\frac{1}{2}\left(y_{2}+y_{3}\right) h \\
& =\frac{h}{2}\left[y_{0}+y_{1}+y_{1}+y_{2}+y_{2}+y_{3}\right] \\
& =\frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}\right)+y_{3}\right]
\end{aligned}
$$

n strips Area $\approx \frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)+y_{n}\right]$

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}[1+2(4+9)+16] \\
& =\frac{43}{2}=21.5
\end{aligned}
$$

Double number of strips

$$
\begin{aligned}
A & \approx \frac{h}{2}\left[y_{0}+2\left(y_{1}+y_{2}+\ldots y_{5}\right)+y_{6}\right] \\
& =\frac{0.5}{2}[1+2(2.25+4+6.25+9+12.25)+16]
\end{aligned}
$$

$$
=21.125
$$

overestimate

underestimate

could be either

In general, increasing the number of strips will increase the accuracy.

It is also possible to estimate the area using rectangles instead of trapezia. Not as accurate for a given number of strips but you can increase the number of strips to gain more accuracy.

overestimate
taking higher values in each consecutive pair

under estimate taking lower values in each consecutive pair

