Intro to Matrices
Examples

$$
\begin{aligned}
& \underline{A}=\left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right)_{2 \times 2} \\
& \underline{B}=\left(\begin{array}{lll}
1 & 0 & 3 \\
4 & 1 & 5
\end{array}\right)_{2 \times 3} \\
& \underline{C}=\left(\begin{array}{ll}
1 & 4 \\
2 & 0 \\
0 & 1
\end{array}\right)_{3 \times 2} \\
& \underline{D}=\left(\begin{array}{ll}
1 & 7 \\
3 & 2
\end{array}\right)_{2 \times 2}
\end{aligned}
$$

Addition
$\underline{\text { Subtraction }}$ - - $=\left(\begin{array}{cc}2-1 & 3-7 \\ 1-3 & 4-2\end{array}\right)_{2 \times 2}=\left(\begin{array}{cc}1 & -4 \\ -2 & 2\end{array}\right)_{2 \times 2}$

A $\pm \underline{B}$ is not defined as matrices are not the same size

We say A and - are non-conformable under addition or subtraction

Multiplication is defined only when the first matrix has the sane number of columns as the second one has rows

If $\underline{A}_{m \times p}$ and $\underline{B}_{p_{x n}}$ then $\underline{A}_{m \times n}$

$$
\underline{\underline{B} C}=\left(\begin{array}{ccc}
1 & 0 & 3 \\
4 & 1 & 5
\end{array}\right)\left(\begin{array}{ll}
1 & 4 \\
2 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
C_{1} & c_{2} \\
R_{2}
\end{array}\left(\begin{array}{cc}
1 \times 1+0 \times 2+3 \times 0 & 7 \\
6 & 21
\end{array}\right)_{2 \times 2}\right.
$$

not even the same size as gs !!

In examples above
$S A$ exists but $A S$ does not
because A has 2 colomins and \leq has 3 rows
\qquad

Scalar Multiplication

$$
\begin{aligned}
E_{*} & \underline{A} \\
= & \left(\begin{array}{ll}
2 & 3 \\
1 & 4
\end{array}\right) \\
\Rightarrow & =\left(\begin{array}{ll}
8 & 12 \\
4 & 16
\end{array}\right) \\
\Rightarrow & -\frac{1}{2} \underline{A}
\end{aligned}
$$

Exercise 6 B
$\begin{array}{ccccc}A & B & C & D & E \\ 2 \times 2 & 1 \times 2 & 1 \times 3 & 3 \times 2 & 2 \times 3\end{array}$
a) $\underline{B}_{1 \times 2}$
b) $D E_{3 \times 3}$
C) $C 1_{1 \times 2}$

$$
\begin{aligned}
& \text { 3) } \underline{A}=\left(\begin{array}{cc}
-1 & -2 \\
0 & 3
\end{array}\right) \quad \underline{B}\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right) \\
& \underline{A} \underline{B}=R_{1}\left(\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
-3 & -2 & -1 \\
3 & 3 & 0
\end{array}\right)_{2 \times 3} \\
& R_{2}\left(\begin{array}{cc}
A^{2} & =\left(\begin{array}{cc}
1 & -4 \\
0 & 9
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

5)

$$
\begin{aligned}
& \left(\begin{array}{cc}
2 & a \\
1 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 & 3 & 0 \\
0 & -1 & 2
\end{array}\right) \\
& R_{1}\left(\begin{array}{ccc}
c_{1} & c_{2} & c_{3} \\
2 & 6-a & 2 a \\
1 & 4 & -2
\end{array}\right)
\end{aligned}
$$

Identity Matrices
All identity matrices are square

$$
I_{2}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \quad I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Suppose $\underset{A}{ }=\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$

$$
\begin{aligned}
& \Rightarrow \underline{A}_{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \\
& \underline{I}_{2} A=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)
\end{aligned}
$$

15) $\quad \underline{A}=\left(\begin{array}{ll}1 & 2 \\ 3 & 1\end{array}\right) \quad I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$

$$
A^{2}=\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)=\left(\begin{array}{ll}
7 & 4 \\
6 & 7
\end{array}\right)
$$

$$
\begin{aligned}
2 \underline{A}+5 I & =2\left(\begin{array}{ll}
1 & 2 \\
3 & 1
\end{array}\right)+5\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& =\left(\begin{array}{ll}
2 & 4 \\
6 & 2
\end{array}\right)+\left(\begin{array}{ll}
5 & 0 \\
0 & 5
\end{array}\right)=\left(\begin{array}{ll}
7 & 4 \\
6 & 7
\end{array}\right) \\
& \therefore 2 \underline{A}+5 \underline{I}=A^{2}
\end{aligned}
$$

17)

$$
A=\left(\begin{array}{ccc}
1 & -1 & b \\
a & 2 & 0 \\
1 & 0 & 3
\end{array}\right) \quad A^{2}=\left(\begin{array}{ccc}
-4 & -3 & -8 \\
4 & 1 & -6 \\
4 & -1 & 7
\end{array}\right)
$$

Find a, b

$$
\begin{array}{rr}
b+a=7 & -a+4=1 \\
b=-2 & 3=a
\end{array}
$$

