Example 1

$$
\begin{array}{cccccc}
3 & 6 & 9 & 12 & 15 & 18 \\
2, & 5, & 8, & 11, & 14 & 17
\end{array}
$$

i) Find rule Add 3
ii) Find next two terms 14, 17
iii) Find formula for $n^{\text {th }}$ term
iv) Find $10^{\text {th }}$ term
v) Find $25^{t h}$ term
iii) $n^{\text {th }}$ term $=3 n-1$
iv) $10^{\text {th }} \operatorname{term}=3 \times 10-1=29$
v) $25^{\text {th }} \operatorname{ter}=3 \times 25-1=74$
$E \times 2$

2	4	6	8		
\downarrow	4	1	1		
8,	10	12,	14	16	18
	\cdots	\cdots			

i) Rule Add 2
ii) Next two terms 16,18
iii) $n^{\text {th }}$ tern $=2 n+6$
iv) $10^{\text {th }}$ term $=2 \times 10+6=26$
v) 25° tern $=2 \times 25+6=56$

Matchstick Pattens

Draw next pattern
How many matchsticks in $n^{\text {th }}$ pattern

$n^{\text {th }}$ pattern has $4 n+1$ matalasticks

Adding 1 each time +1 is the left wall of first pattern

Decreasing Linear Sequences

Ex

$$
\begin{aligned}
& 51,48,45,42, \ldots 9,36 \\
& n^{\text {th }} \operatorname{term}=54-3 n
\end{aligned}
$$

Ex 2

$$
\begin{array}{r}
46,42,38,34 \\
n^{t h} \text { term }=50-4 n
\end{array}
$$

Exercise Find the $n^{\text {th }}$ tern formula
1)

$$
\begin{aligned}
& 99,98,97,96 \\
& n^{t h} \text { tern }=100-n
\end{aligned}
$$

2)

$$
\begin{aligned}
& 21,16,11,6 \\
& n^{\text {th }} \text { term }=26-5 n
\end{aligned}
$$

3)

$$
\begin{aligned}
& 99,88,77,66 \\
& n^{t^{n}} \text { tern }=110-11 n
\end{aligned}
$$

4)

$$
\begin{aligned}
& -1,-5,-9,-17 \\
& n^{\text {th }} \text { term }=3-4 n
\end{aligned}
$$

5)

$$
\begin{array}{r}
6 \frac{1}{2}, 5,3 \frac{1}{2}, 2, \frac{1}{2} \\
n^{\text {en }} \text { tern }
\end{array} \begin{array}{r}
\text { or } 8-1.5 n \\
\end{array}
$$

Lead in to Quadratic Sequences
\qquad

$$
\begin{array}{ll}
1^{2}=1 & =1 \\
2^{2}=1+3 & =4 \\
3^{2}=1+3+5 & =9 \\
4^{2}=1+3+5+7 & =16 \\
5^{2}=1+3+5+7+9 & =25 \\
6^{2}=1+3+5+7+9+11 & =36 \\
7^{2}=1+3+5+7+9+11+13 & =49 \\
8^{2}=1+3+5+7+9+11+13+15 & =64
\end{array}
$$

Tue difference
list dit $3^{2} 5^{2} 7^{2} 9^{2} 11^{2} 13^{2} 15$
Sequence $1 \begin{array}{llllllll} & 4 & 9 & 16 & 25 & 36 & 49 & 64\end{array}$

If $2 n d$ differences are all 2 then the $n^{\text {th }}$ term has n^{2} in the formula.

n^{2}	1	4	9	16	25	36

$$
\begin{array}{cccc}
+6 & 6 & 6 & 6
\end{array}
$$

