Vectors 2D SUVAT Example Question

SUVAT Equations

$$V = U + at$$

$$S = Ut + \frac{1}{2}at^{2}$$

$$S = Vt - \frac{1}{2}at^{2}$$

$$S = \frac{U+V}{2}$$

$$V^{2} = U^{2} + 2as$$

$$V = U + at$$

$$S = Ut + \frac{1}{2}at^{2}$$

$$S = Vt - \frac{1}{2}at^{2}$$

$$S = \frac{U+V}{2}$$

$$V^{2} = U^{2} + 2as$$

A B

- 6 The points A and B have position vectors $(3\mathbf{i} + 2\mathbf{j})$ metres and $(6\mathbf{i} 4\mathbf{j})$ metres respectively. The vectors \mathbf{i} and \mathbf{j} are in a horizontal plane.
 - (a) A particle moves from A to B with constant velocity $(\mathbf{i} 2\mathbf{j}) \,\mathrm{m} \,\mathrm{s}^{-1}$. Calculate the time that the particle takes to move from A to B.
 - (b) The particle then moves from B to a point C with a constant acceleration of $2\mathbf{j}$ m s⁻². It takes 4 seconds to move from B to C.
 - (i) Find the position vector of C.

(4 marks)

(ii) Find the distance AC.

(2 marks)

a) Distance =
$$\sqrt{(6-3)^2 + (-4-2)^2}$$

= $\sqrt{9+36}$
= $\sqrt{45}$
Speed = $\sqrt{1^2 + (-2)^2}$ = $\sqrt{5}$
Time = $\frac{\text{Distance}}{\text{Speed}}$ = $\sqrt{45}$ = $\sqrt{9}$ = $\sqrt{3}$

$$\frac{5}{2} - \binom{6}{-4} = \binom{1}{-2} + \frac{1}{2} \binom{0}{2} + \frac{1}{2} \binom{0}{2} + \frac{1}{2} \binom{0}{2} \times 4^{2}$$

$$\frac{5}{2} - \binom{6}{-4} = 4 \binom{1}{-2} + \frac{1}{2} \binom{0}{2} \times 4^{2}$$

$$\frac{5}{2} = \binom{4}{-8} + \binom{0}{16} + \binom{6}{-4}$$

$$\frac{5}{2} = \binom{10}{4} + \binom{10}{4} +$$

ii) Distance from
$$A = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 to $C = \begin{pmatrix} 10 \\ 4 \end{pmatrix}$

$$= \sqrt{(10-3)^2 + (4-2)^2}$$

$$= \sqrt{49+4}$$

$$= \sqrt{53} = 7.28 \text{ m}$$