Higher Tier Formulae Sheet

Perimeter, area and volume

Where a and b are the lengths of the parallel sides and h is their perpendicular separation:

$$
\text { Area of a trapezium }=\frac{1}{2}(a+b) h
$$

Volume of a prism $=$ area of cross section \times length
Where r is the radius and d is the diameter:
Circumference of a circle $=2 \pi r=\pi d$
Area of a circle $=\pi r^{2}$

Pythagoras' Theorem and Trigonometry

b

Quadratic formula

The solution of $a x^{2}+b x+c=0$
where $a \neq 0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In any right-angled triangle where a, b and c are the length of the sides and c is the hypotenuse:

$$
a^{2}+b^{2}=c^{2}
$$

In any right-angled triangle $A B C$ where a, b and c are the length of the sides and c is the hypotenuse:

$$
\sin A=\frac{a}{c} \quad \cos A=\frac{b}{c} \quad \tan A=\frac{a}{b}
$$

In any triangle $A B C$ where a, b and c are the length of the sides:

$$
\begin{aligned}
& \text { sine rule: } \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& \text { cosine rule: } a^{2}=b^{2}+c^{2}-2 b c \cos A \\
& \text { Area of triangle }=\frac{1}{2} a b \sin C
\end{aligned}
$$

Probability

Where $\mathrm{P}(A)$ is the probability of outcome A and $\mathrm{P}(B)$ is the probability of outcome B :

$$
\begin{aligned}
& \mathrm{P}(A \text { or } B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \text { and } B) \\
& \mathrm{P}(A \text { and } B)=\mathrm{P}(A \text { given } B) \mathrm{P}(B)
\end{aligned}
$$

END OF ADVANCE INFORMATION

