Rounding and Bounds
Round to $1 d_{. p}$, $2 d_{-p-}, 3 d_{. p}$

$$
46.3827 \quad 46.4 \quad 46.38 \quad 46.383
$$

Round to	s.f.,	shf.	sst
618,352	600,000	620,000	618,000
0.0004186	0.0004	0.00042	0.000419

Error Intervals
$x=6.2 t$ Id.p. Write an error interval for x

$$
6.15 \leqslant x<6.25
$$

$x=4.19$ to 2 dip. Write an error interval for x

$$
4.185 \leq x<4.195
$$

$x=63,200$ to 3 s.f.

$$
63,150 \leq x<63,250
$$

Exercise Write error intervals

$$
\begin{aligned}
& \text { 1) } y=16.4 \text { to } 1 \text { dep. } \\
& 16.35 \leq y<16.45
\end{aligned}
$$

2)

$$
\begin{aligned}
& p= 4.567 \text { to } 3 \text { dip. } \\
& 4.5665 \leq p< 4.5675 \\
& \text { Lower Bound } \quad \text { upper Bound }
\end{aligned}
$$

3)

$$
\begin{gathered}
q=840 \text { to } 2 \text { s.f. } \\
835 \leq q<845
\end{gathered}
$$

4)

$$
\begin{aligned}
& r=89,100 \text { to 3 s.t. } \\
& 89,050 \leqslant r<89,150
\end{aligned}
$$

5)

$$
\begin{gathered}
h=0.004 \text { to ls.f. } \\
0.0035 \leqslant h<0.0045
\end{gathered}
$$

Bounds
Ex 1

Suppose a carpet measures 4 m by 3 m with each measurement to nearest metre

$$
\begin{aligned}
& 3.5 m \leq L<4.5 \mathrm{~m} \\
& 2.5 \mathrm{~m} \leq W<3.5 \mathrm{~m}
\end{aligned}
$$

Find upper and lower bounds for the area

$$
\begin{aligned}
\text { upper bound } & =\underset{\text { biggest }}{4.5} \times \underset{\text { biggest }}{3.5}=15.75 \mathrm{~m}^{2} \\
\text { lower bound } & =\underset{\text { smallort }}{3.5} \times \underset{\text { Smallest }}{2.5}=8.75 \mathrm{~m}^{2}
\end{aligned}
$$

$$
8.75 \mathrm{~m}^{2} \leq \text { Area }<15.75 \mathrm{~m}^{2}
$$

A more realistic example. Suppose the measurements are correct to nearest 10 cm

$$
\begin{aligned}
3.95 \mathrm{~m} & \leq L<4.05 \mathrm{~m} \\
2.95 \mathrm{~m} & \leq W<3.05 \mathrm{~m} \\
\text { lower bound } & =3.95 \times 2.95=11.65 \mathrm{~m}^{2} \\
\text { upper bound } & =4.05 \times 3.05=12.35 \mathrm{~m}^{2} \\
11.65 \mathrm{~m}^{2} & \leq \text { Area }<12.35 \mathrm{~m}^{2}
\end{aligned}
$$

Ex A boy runs 100 m in 15 seconds Distance is measured to nearest metre and time to nearest second.
Find upper and lower bounds for his speed

$$
\begin{gathered}
99.5 \mathrm{~m} \leq \text { Distance }<100.5 \mathrm{~m} \\
14.5 \mathrm{~s} \leq \text { Time }<15.5 \mathrm{~s} \\
\text { Speed }=\frac{\text { Distance }}{\text { Time }}
\end{gathered}
$$

upper bound for speed $=\frac{100.5}{14.5}=\frac{\max }{\min } 6.93 \mathrm{~m} / \mathrm{s}$
lower bound for speed $=\frac{99.5}{15.5}=\frac{\min }{\max } 6.42 \mathrm{~m} / \mathrm{s}$

Upper and Lower Bounds
Addition Lower Bound for $A+B$

$$
A_{\min }+B_{\min }
$$

Upper Bound for $A+B$

$$
A_{\text {max }}+B_{\text {max }}
$$

Subtraction Lower Bound for $A-B$

$$
A_{\min }-B_{\max }
$$

Upper Bound for A-B

$$
A_{\max }-B_{\min }
$$

Multiplication Lower Bound for $A \times B$

$$
A_{\text {min }} \times B_{\text {min }}
$$

Upper Bound for $A \times B$

$$
A_{\max } \times B_{\max }
$$

Division Lover Bound for $\frac{A}{B}$

$$
=\frac{A_{\min }}{B_{\max }}
$$

Upper Bound for $\frac{A}{B}$

$$
=\frac{A_{\text {max }}}{B_{\text {min }}}
$$

