Question Number	Scheme	Marks
Q7 (a) (b)	If the lines meet, $-1+3 \lambda=-4+3 \mu$ and $2+4 \lambda=2 \mu$ Solve to give $\lambda=0$ ($\mu=1$ but this need not be seen $)$. Also $1-\lambda=\alpha$ and so $\alpha=1$. $\left\|\begin{array}{rrr}\mathbf{i} & \mathbf{j} & \mathbf{k} \\ -1 & 3 & 4 \\ 0 & 3 & 2\end{array}\right\|=-6 \mathbf{i}+2 \mathbf{j}-3 \mathbf{k}$ is perpendicular to both lines and hence to the plane The plane has equation $\mathbf{r} . \mathbf{n}=\mathbf{a} . \mathbf{n}$, which is $-6 x+2 y-3 z=-14$, i.e. $-6 x+2 y-3 z+14=0$.	M1 M1 A1 B1 (4) M1 A1 M1 Al o.a.e. (4)
OR (b)	Alternative scheme Use $(1,-1,2)$ and $(\alpha,-4,0)$ in equation $a x+b y+c z+d=0$ And third point so three equations, and attempt to solve Obtain $6 x-2 y+3 z=$ $(6 x-2 y+3 z)-14=0$	M1 M1 A1 Al o.a.e. (4)
(c)	$\left(a_{1}-a_{2}\right)=\mathbf{i}-3 \mathbf{j}-2 k$ Use formula $\frac{\left(\mathbf{a}_{1}-\mathbf{a}_{2}\right) \bullet \mathbf{n}}{\|\mathbf{n}\|}=\frac{(\mathbf{i}-\mathbf{3} \mathbf{j}-\mathbf{2 k}) \cdot(-\mathbf{6 i} \mathbf{i} \mathbf{2 j} \mathbf{- 3 k})}{\sqrt{(36+4+9)}}=\left(\frac{-6}{7}\right)$ Distance is $\frac{6}{7}$	M1 M1 A1 (3) [11]

Question Number	Scheme	Marks
6. (a)	$\mathbf{n}=(2 \mathbf{j}-\mathbf{k}) \times(3 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k})=6 \mathbf{i}-3 \mathbf{j}-6 \mathbf{k}$ o.a.e. (e.g. $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})$	M1 A1
(b)	Line l has direction $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$ Angle between line l and normal is given by $(\cos \beta$ or $\sin \alpha)=\frac{4+2+2}{\sqrt{9} \sqrt{9}}=\frac{8}{9}$ $\alpha=90-\beta=63$ degrees to nearest degree.	B1 M1 A1ft A1 awrt
(c) Alt 1	Plane P has equation $\mathbf{r} .(2 \mathbf{i}-\mathbf{j}-2 \mathbf{k})=1$ Perpendicular distance is $\frac{1-(-7)}{\sqrt{9}}=\frac{8}{3}$	M1 A1 M1 A1
(c) Alt 2	Parallel plane through A has equation $\mathbf{r} . \frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{-7}{3}$ Plane P has equation $\mathbf{r} \cdot \frac{2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}}{3}=\frac{1}{3}$ So O lies between the two and perpendicular distance is $\frac{1}{3}+\frac{7}{3}=\frac{8}{3}$	M1 A1 M1 A1
(c) Alt 3	Distance A to $(3,1,2)=\sqrt{2^{2}+2^{2}+1^{2}}=3$ Perpendicular distance is ' 3 ' $\sin \alpha=3 \times \frac{8}{9}=\frac{8}{3}$	M1A1 M1A1
(c) Alt 4	Finding Cartesian equation of plane $\mathrm{P}: 2 \mathrm{x}-\mathrm{y}-2 \mathrm{z}-1=0$ $\mathrm{d}=\frac{\left\|n_{1} \alpha+n_{2} \beta+n_{3} \gamma+d\right\|}{\sqrt{n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}}=\frac{\|2(1)-1(3)-2(3)-1\|}{\sqrt{2^{2}+1^{2}+2^{2}}}=\frac{8}{3}$	M1 A1 M1A1
(a) M1 (b) B 1 M1 1A1ft 2A1 (c) 1M1 1A1 2M1 2A1	Notes: Cross product of the correct vectors CAO o.e. CAO Angle between ' $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ ' and $2 \mathbf{i}-2 \mathbf{j}-\mathbf{k}$, formula of correct form 8/9ft CAO awrt Eqn of plane using $2 \mathbf{i}-\mathbf{j}-2 \mathbf{k}$ or dist of A from O or finding length of AP Correct equation (must have $=$) or A to $(3,1,2)=3$ Using correct method to find perpendicular distance CAO	

Question Number	Scheme	Marks
3. (a)	$\begin{array}{ll} \text { uиu }=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}, & B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k} \\ A \ldots \mathbf{k} \\ A C \times B C=10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k} & \end{array}$	B1, B1 M1 A1
		(4)
(b)	Area of triangle $A B C=\frac{1}{2}\|10 \mathbf{i}-15 \mathbf{j}+30 \mathbf{k}\|=\frac{1}{2} \sqrt{1225}=17.5$	M1 A1
(c)	Equation of plane is $10 x-15 y+30 z=-20$ or $2 x-3 y+6 z=-4$ So $\mathbf{r} .(2 \mathbf{i}-3 \mathbf{j}+6 \mathbf{k})=-4$ or correct multiple	$\begin{array}{ll} \text { M1 } \\ \text { A1 } & (2) \\ \quad(8 \text { marks) } \end{array}$

Notes

a1B1: \quad AC $=3 \mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$ cao, any form
a2B1: $\quad B C=-3 \mathbf{i}+4 \mathbf{j}+3 \mathbf{k}$ cao, any form
a1M1: Attempt to find cross product, modulus of one term correct.
a1A1: cao, any form.
b1M1: modulus of their answer to (a) - condone missing $1 / 2$ here. To finding area of triangle by correct method.
b1A1: cao.
c1M1: [Using their answer to (a) to] find equation of plane. Look for a.n or b.n or c.n for p. c1A1: cao

