Sine Rule and Cosine Rule

Example 1

Erz

x 13 cm 70° 60°

Find x

$$\frac{13}{\sin 70^\circ} = \frac{32}{\sin 60^\circ}$$

$$\frac{13}{51070^{\circ}} \times 51060^{\circ} = 500$$

$$x = 11.98 \, \mathrm{cm}$$

$$\frac{x}{Sin 110^{\circ}} = \frac{21}{Sin 30^{\circ}}$$

$$x = \frac{21}{5in30^{\circ}} \times 5in 110^{\circ}$$

 $x = 39.47 \text{ m}$

Ex3 Finding an angle O

15	5	18
SinC		Sin 77°
sinQ 15	C.	<u>Sin 77°</u> 18
sina	=	<u>دا پر دند.</u> 18
Sina	= (0.811975
0-	= sin	5 (0.811975)
0 =	- 54	·.3°

Ex4 This example is called the embiguous case of sine rule Sching is an be constructed with a 25° angle adjacent to a Sch side and opposite A 3 cm side In this case we cannot be sure whether

the angle opposite the 5 cm side is the obtive angle & or the acote angle O' Sine Rule $\frac{s}{\sin 25^{\circ}} = \frac{5}{\sin 6}$ $\frac{\sin 25^{\circ}}{7} = \frac{\sin 0}{5}$ Sin25° x 5 = Sin Q $S_{1n}'\left(\frac{S_{1n}2s}{3}\times S\right) = 0$ $Q = 44.8^{\circ}$ or $Q = 180^{\circ} - 44.8^{\circ} = 135.2^{\circ}$ This is because sin (2 = Sin (180 - 5))To check whether the obtuse angle is possible we can add 135.2° to 25° to make sure the 180° som for a triangle has been exceeded.

To find an angle we can rearrange this formula

 $a^{2} = b^{2} + c^{2} - 2bc \cos A$ $2bc \cos A = b^{2} + c^{2} - a^{2}$ $\cos A = \frac{b^{2} + c^{2} - a^{2}}{2bc}$

