Sine Rule and Cosine Rule

Sine Rule

$$
\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}
$$

A

Example 1
Find x

$$
\begin{gathered}
\frac{13}{\sin 70^{\circ}}=\frac{x}{\sin 60^{\circ}} \\
\frac{13}{\sin 70^{\circ}} \times \sin 60^{\circ}=x \\
x=11.98 \mathrm{~cm}
\end{gathered}
$$

$$
E \times 2
$$

Find x

$$
\frac{x}{\sin 110^{\circ}}=\frac{21}{\sin 30^{\circ}}
$$

$$
\begin{aligned}
& x=\frac{21}{\sin 30^{\circ}} \times \sin 110^{\circ} \\
& x=39.47 \mathrm{~m}
\end{aligned}
$$

Ex Finding an angle O

$$
\begin{aligned}
\frac{15}{\sin \theta} & =\frac{18}{\sin 77^{\circ}} \\
\frac{\sin \theta}{15} & =\frac{\sin 77^{\circ}}{18} \\
\sin \theta & =\frac{\sin 77^{\circ}}{18} \times 15 \\
\sin \theta & =0.811975 \\
\theta & =\sin ^{-1}(0.811975) \\
\theta & =54.3^{\circ}
\end{aligned}
$$

Ex This example is called the ambiguous case of sine rule

Two different triangles can be constructed with a 25° angle adjacent to a Som side and opposite a 3 cm side

In this case we cannot be sure whether
the angle opposite the 5 cm side is the obtuse angle θ or the acute angle O^{\prime}

Sine Rub $\frac{3}{\sin 25^{\circ}}=\frac{5}{\sin \theta}$

$$
\begin{aligned}
\frac{\sin 25^{\circ}}{3} & =\frac{\sin \theta}{5} \\
\frac{\sin 25^{\circ}}{3} \times 5 & =\sin \theta \\
\sin ^{-1}\left(\frac{\sin 25^{\circ}}{3} \times 5\right) & =\theta \\
\theta & =44.8^{\circ}
\end{aligned}
$$

or $\theta=180^{\circ}-44.8^{\circ}=135.2^{\circ}$
This is because $\sin \theta=\sin (180 \theta)$

To check whether the obtuse angle is possible we can add 135.2° to 25° to mate sure the 180° sum for a triangle has been exceeded.

Cosine Rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

To find an angle we can rearrange this formula

$$
\begin{aligned}
a^{2} & =b^{2}+c^{2}-2 b c \cos A \\
2 b c \cos A & =b^{2}+c^{2}-a^{2} \\
\cos A & =\frac{b^{2}+c^{2}-a^{2}}{2 b c}
\end{aligned}
$$

E* 5

$$
\begin{aligned}
& \operatorname{Fin} x \\
& x^{2}= 15^{2}+11^{2}-2 \times 11 \times 15 \cos 66^{\circ} \\
& x^{2}= 211.7769 \\
& x= \sqrt{211.7769} \\
& x= 14.55 \mathrm{~cm}
\end{aligned}
$$

