$$2m+1 + 2n+1 = 2m+2n+2$$

= $2(m+n+1)$
which is even since
2 is a factor

Exercise
Prove odd x odd
$$\rightarrow$$
 odd
As above let odd numbers be
 $2n+1$ and $2m+1$
 $(2n+1)(2n+1)$
 $= 4nm+2m+2n+1$
 $= 2(2nm+m+n)+1$

which is odd because 2 is not a factor Prove the sum of 3 consecutive integers is divisible by 3 Let numbers be n, n+1, n+2Sum = n + n+1 + n+2 = 3n+3 = 3(n+1)Divisible by 3 since 3 is a factor

Ex3 58, 55, 52, 49

$$f^{*}$$
 tern $61 - 3n$
 $connon diff
= -3$

Quadratic Sequences

$$\begin{array}{c} \text{Consider and} & z & z & z & z \\ \begin{array}{c} \text{ist}} & \text{if } & \text$$

$$n^{tl}$$
 term = $n^2 + n + 5$

$$E_{x2}^{2nd} = 4 + 4$$

$$E_{x2}^{2nd} = 3 - 7 - 11 - 15 - 19$$

$$6 - 9 - 16 - 27 - 42 - 61$$

$$2n^{2} - 2 - 8 - 18 - 32 - 5 - 8 - 11$$

$$-3n - 3 - 6 - 9 - 12 - 15 - 18$$

$$h^{th} term = 3n^2 - 5n + 12$$

2~1		2	2	2	
ist	191	203	23	28	35
n ²	T	4	9	16	25
	18	16	14	12	10
-2n	- 2	-4	- 6	- 8	-10
120	20	20	20	20	20
720	ntr	tern	= r	$1^2 - 2$	- + 2