Algebraic Proof
Need an integer say n
even integer odd integer

In where n is

$$
2 n+1
$$

Prove odd + odd \rightarrow even
Let $2 n+1$ be any odd number $2 m+1$ be any odd number

$$
\begin{aligned}
2 m+1+2 n+1 & =2 m+2 n+2 \\
& =2(m+n+1)
\end{aligned}
$$

which is even since 2 is a factor

Exercise
Prove odd x odd \rightarrow odd
As above let odd numbers be

$$
\begin{aligned}
& 2 n+1 \text { and } 2 m+1 \\
& (2 n+1)(2 m+1) \\
& =4 n m+2 m+2 n+1 \\
& =4(2 n m+m+n)+1
\end{aligned}
$$

which is odd because 2 is not a factor

Prove the sum of 3 consecutive integers is divisible by 3

Let numbers be $n, n+1, n+2$

$$
\begin{aligned}
\text { Sum } & =n+n+1+n+2 \\
& =3 n+3 \\
& =3(n+1)
\end{aligned}
$$

Divisible by 3 since 3 is a factor

Sequences
Linear Sequences
$\begin{array}{lllccc} & \text { Ex 1 } & 3 & 6 & 9 & 12 \\ & 4 & 7 & 10 & 13 & \ldots\end{array}$
Common difference $=3$

$$
n^{t h} \operatorname{term}=3 n+1
$$

Ex 2
common diff $=7$

$$
n^{t h} \text { term }=7 n-5
$$

Ex

$$
\begin{aligned}
& 58,55,52,49 \\
& n^{t^{2}} \operatorname{term} 61-3 n
\end{aligned}
$$

common diff

$$
=-3
$$

Quadratic Sequences
Consider and

$$
\begin{aligned}
& \begin{array}{lllll}
777 & 7 & 7 & 7
\end{array} \\
& n^{k n} \text { tarm }=2 n^{2}-3 n+7 \\
& \text { Exercise } 2 x \quad 6 \quad 6 \\
& 10^{\text {ist }} 14^{10} 24^{16} 40^{22} 62 \\
& 3 n^{2} \quad \begin{array}{lllll}
3 & 12 & 27 & 48 & 75 \\
\hline & 2 & -3 & -8 & -13
\end{array} \\
& \begin{array}{llllll}
-5 n & -5 & -10 & -15 & -20 & -25 \\
+12 & 12 & 12 & 12 & 12 & 12
\end{array} \\
& \frac{n^{\text {th }} \operatorname{tarn}^{n^{2 n 1}} 1 n^{2}-5 n+12}{\text { ist }^{2} 20^{3} 23^{5} 28^{2} 35} \\
& \begin{array}{llllll}
n^{2} & 1 & 4 & 9 & 16 & 25 \\
\hline 18 & 16 & 14 & 12 & 10
\end{array} \\
& \begin{array}{llllll}
-2 n & -2 & -4 & -6 & -8 & -10 \\
\hline 20 & 20 & 20 & 20 & 20 & 20
\end{array} \\
& n^{t n} \text { tern }=n^{2}-2 n+20
\end{aligned}
$$

