$$
x^{3}+x^{2}-3 x-2=0
$$

Show this has a root between $x=1$ and $x=2$
Let $f(x)=x^{3}+x^{2}-3 x-2$

$$
\begin{aligned}
& f(1)=1^{3}+1^{2}-3(1)-2=-3 \\
& f(2)=2^{3}+2^{2}-3(2)-2=+4
\end{aligned}
$$

$f(x)$ is a continuous function. A sign change between $x=1$ and $x=2 \Rightarrow$ a soot between $x=1$ and $x=2$

$$
\begin{gathered}
x^{3}+x^{2}-3 x-2=0 \\
x^{3}=-x^{2}+3 x+2 \\
x=\sqrt[3]{-x^{2}+3 x+2} \\
x_{n+1}=\sqrt[3]{-x_{n}^{2}+3 x_{n}+2} \\
x_{0}=2 \quad \\
x_{1}=\sqrt[3]{-2^{2}+3(2)+2}=\sqrt[3]{4} \\
\\
x_{2}=\sqrt[3]{-1.587^{2}+3(1.587)+2}=1.619 \\
x_{3}=\sqrt[3]{-1.619^{2}+3(1.619)+2}=1.618
\end{gathered}
$$

Congruent Triangles

To prove $\triangle S$ ABC and PaR are congruent ABC E PaR

You need to show:

1. S.S.S. 3 sides the same
2. S.A.S.

2 sides and included angle the same
3. A.A.S

2 Angles and corresponding
side the same
4 R.H.S right, angle, hypotenuse and owe other side the same.

Boxplots
Lowest $Q_{p} Q_{2}$
Q3 Hisheat
 Guts

Boys

On average boys performed bettor as they had a higher median score than the sills, 55 compared to 50.

The boys results were more consistent than the girls. They had an IQR of 20 compared to 40

Estimation

$$
\begin{aligned}
\frac{2.9 \times 1.8}{0.214} \approx \frac{3 \times 2}{0.2} & =\frac{6}{0.2} \\
& =\frac{60}{2} \\
& =30
\end{aligned}
$$

Turning points

$$
\begin{aligned}
& y=x^{2}-6 x+12 \\
& y=(x-3)^{2}+12-9 \\
& y=(x-3)^{2}+3
\end{aligned}
$$

