Q21 $f(x)=x^{3} \quad g(x)=4 x-1$
a) Find $f g(z)$

$$
\begin{aligned}
f g(x)=f(4 x-1) & =(4 x-1)^{3} \\
f_{g}(2) & =(4(2)-1)^{3} \\
& =7^{3} \\
& =343
\end{aligned}
$$

OR

$$
\begin{aligned}
f_{g}(2) & =f(4(2)-1) \\
& =f(7)=7^{3}=343
\end{aligned}
$$

b) $\quad h(x)=f_{g}(x)=(4 x-1)^{3}$

Find $h^{-1}(x)$

Alternatively
Let $y=(4 x-1)^{3}$
$\begin{aligned} & \text { swap } \\ & \text { variables }\end{aligned} x=(4 y-1)^{3}$

$$
\begin{aligned}
3 \sqrt{x} & =4 y-1 \\
\sqrt[3]{x}+1 & =4 y \\
\frac{\sqrt[3]{x}+1}{4} & =y \\
\therefore \quad h^{-1}(x) & =\frac{\sqrt[3]{x}+1}{4}
\end{aligned}
$$

Reverse Percentages
Example
In the first week of a sale a coat is
reduced by 15%. In the second week it is reduced by 10% of its sale price and offered for 261.20 . What was its pre-sale price
Let coat original price be

$$
\begin{gathered}
x \times 0.85 \times 0.9=t 61.20 \\
t 61.20 \div 0.9 \div 0.85=x \\
x=t 80
\end{gathered}
$$

Q12 Vol of cylinder $=\pi r^{2} h$

$$
\begin{aligned}
& V=\pi r^{2} h \\
& \frac{V}{\left(\pi r^{2}\right)}=h
\end{aligned}
$$

$$
\begin{aligned}
& h=\frac{1178}{\left(\pi \times 5^{2}\right)} \\
& h=15.0 \mathrm{~cm}
\end{aligned}
$$

$$
\begin{aligned}
\tan \theta & =\frac{15}{10} \\
\theta & =\tan ^{-1}\left(\frac{15}{10}\right) \\
\theta & =56.3^{\circ}
\end{aligned}
$$

$Q 7$

Q16 10 cubes marked
Takes 20 cubes and 3 have a mark
Assume $\frac{3}{20}$ are marked
so 10 is $\frac{3}{20}$ of population

$$
\text { Population }=10 \times \frac{20}{3}=\frac{200}{3}=66.6
$$

Estimate 67

