Consider $\quad x^{3}-7 x+5=0$
This can be rearranged to

$$
\begin{aligned}
& x^{3}=7 x-5 \\
& x=\sqrt[3]{7 x-5}
\end{aligned}
$$

We can use the iterative formula

$$
x_{n+1}=\sqrt[3]{7 x_{n}-5}
$$

to find an approximate roof of the equation

$$
\left.\begin{array}{l}
2^{3}-7(2)+5=-1 \\
3^{3}-7(3)+5=11
\end{array}\right\} \Rightarrow \begin{aligned}
& a \text { root lies between } \\
& x=2 \text { and } x=3
\end{aligned}
$$ $x=2$ and $x=3$

so let $x_{1}=3$

$$
\begin{aligned}
& x_{2}=\sqrt[3]{7 \times 3-5}=2.520 \\
& x_{3}=\sqrt[3]{7 \times 2.520-5}=2.329 \\
& x_{4}=\sqrt[3]{7 \times 2.329-5}=2.244 \\
& x_{5}=\sqrt[3]{7 \times 2.244-5}=2.204
\end{aligned}
$$

This iterative process is heading towards the root located at approximately

$$
x=2.166
$$

