Completing the Square

 $g = x^{2} - 6x + 7$ $g = (x - 3)^{2} + 7 - 9$ $g = (x - 3)^{2} - 2$

Exercise

1)
$$y = x^{2} + 2n + 7$$

 $y = (x + 1)^{2} + 7 - 1$
 $y = (x + 1)^{2} + 6$

2)
$$y = x^{2} - 4x + 1$$

 $y = (x - 2)^{2} + 1 - 4$
 $y = (x - 2)^{2} - 3$

3)
$$y = x^{2} - 5x + 10$$

 $y = (x - \frac{5}{2})^{2} + 10 - \frac{25}{4}$
 $y = (x - \frac{5}{2})^{2} + \frac{40}{4} - \frac{25}{4}$
 $y = (x - \frac{5}{2})^{2} + \frac{40}{4} - \frac{25}{4}$

Line of symmetry $x = \frac{5}{2}$ Min point (5/2, 15/4)

m 7 (forward slope at angle more than 45° with horizontel
-1 < m < 0	backward slope less than 45° with horizontal
m = -1	backward slope 45° with both axes
$m \geq -1$	backward slope more than USU with horizontal

y = mx + cThis is the standard form of a straight line y = mx + cgradient y-intercept