Compound Measures

Speed

Density

Pressure

$$
\begin{aligned}
& \text { Speed }=\frac{\text { Distance }}{\text { Time }} \\
& \text { Time }=\frac{\text { Distance }}{\text { Speed }} \\
& \text { Distance }=\text { Speed } \times \text { Time } \\
& \text { Density }=\frac{\text { Mass }}{\text { Volume }} \\
& \text { Volume }=\frac{\text { Mass }}{\text { Density }} \\
& \text { Mass }=\text { Density } \times \text { Volume }
\end{aligned}
$$

$$
\begin{aligned}
\text { Pressure } & =\frac{\text { Force }}{\text { Area }} \\
\text { Area } & =\frac{\text { Force }}{\text { Pressure }} \\
\text { Force } & =\text { PressurexArea }
\end{aligned}
$$

Speed, Time, Distance

$$
\text { Average Speed }=\frac{\text { Total Distance }}{\text { Total Time }}
$$

Example
John drives for 2 hours at $40 \mathrm{~km} / \mathrm{hr}$ from A to B. He then drives 120 km from B to C at $30 \mathrm{~km} / \mathrm{hr}$.
What is John's average speed for the whole journey from A to C ?

$$
\begin{array}{rl}
& \text { Speed Time Distance } \\
A \text { SoB } 40 \mathrm{~km} / \mathrm{h} & 2 \mathrm{hrs} \\
B \text { to } C \quad 30 \mathrm{~km} / \mathrm{hm} & \frac{4 \mathrm{hrs}}{6 \mathrm{hrs}} \frac{120 \mathrm{~km}}{200 \mathrm{~km}} \\
\text { Average Speed } & =\frac{\text { Total Distance }}{\text { Total Time }} \\
& =\frac{200}{6}=33 \frac{1}{3} \mathrm{Km} / \mathrm{hr}
\end{array}
$$

Ex 2 Bill travels 100 km from P to Q at $25 \mathrm{~km} / \mathrm{h}$. He then travels for 3 hours at $30 \mathrm{~km} / \mathrm{h}$ from Q toR. He then
travels from R to S at $40 \mathrm{~km} / \mathrm{h}$ for $1 \frac{1}{2}$ hos.
Work out his average speed from P to S.

	Speed	Time	Distance
P to Q	$25 \mathrm{kn} / \mathrm{h}$	4	100 km
Q to R	$30 \mathrm{~km} / \mathrm{h}$	3	90 km
R to S	$40 \mathrm{~km} / \mathrm{h}$	$\frac{1 \frac{1}{2}}{8 \frac{1}{2}}$	
			60 km
		250 km	

$$
\begin{aligned}
\text { Average Speed } & =\frac{\text { Total Distance }}{\text { Total Time }} \\
& =\frac{250}{8 \frac{1}{2}} \\
& =29.4 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Density, Mass, Volume
A has density $4 \mathrm{~g} / \mathrm{cm}^{3}$
B has density $6 \mathrm{~g} / \mathrm{cm}^{3}$
A compound C is made from $200 \mathrm{~cm}^{3}$ of A and $150 \mathrm{~cm}^{3}$ of B. Find the density of C

	Density	Mass	Volume
A	$4 \mathrm{~g} / \mathrm{cm}^{3}$	800 g	$200 \mathrm{~cm}^{3}$
B	$6 \mathrm{~g} / \mathrm{cm}^{3}$	900 g	$150 \mathrm{~cm}^{3}$
		1700 g	$350 \mathrm{~cm}^{3}$

$$
\begin{aligned}
\text { Density of } C & =\frac{\text { Total Mass }}{\text { Total Volume }} \\
& =\frac{1700}{350}=4.86 \mathrm{~g} / \mathrm{cm}^{3}
\end{aligned}
$$

$E \times 2 T$ is made from P, Q, R
P has density $7 \mathrm{~g} / \mathrm{cm}^{3}$ and mass 56 g
Q has density $10 \mathrm{~g} / \mathrm{cm}^{3}$ and volume of $8 \mathrm{~cm}^{3}$
R has mass of 80 g and volume $16 \mathrm{~cm}^{3}$
Find the density of T

Density Mass Volume

$$
\begin{array}{rrrl}
P & 7 \mathrm{~g}_{1} \mathrm{~cm}^{3} & 56 \mathrm{~g} & 8 \mathrm{~cm}^{3} \\
Q & 10 \mathrm{~g} / \mathrm{cm}^{3} \quad 80 \mathrm{~g} & 8 \mathrm{~cm}^{3} \\
R & 80 \mathrm{~g} & 16 \mathrm{~cm}^{3} \\
\text { Density of } T & =\frac{\text { Total Mass }}{\text { Total Volume }} & =\frac{216}{32} \\
& =6.75 \mathrm{~g} / \mathrm{cm}^{3}
\end{array}
$$

Exercise 22.15 (Pink Book Page 465)
la) 100 m in $13 \mathrm{~s}=7.7 \mathrm{~m} / \mathrm{s}$
13) 200 m in $28 \mathrm{~s}=7.1 \mathrm{~m} / \mathrm{s}$
lc) 400 m in $58.4 \mathrm{~s}=6.8 \mathrm{~m} / \mathrm{s}$
ld) 1500 m in $4 \mathrm{~min} 52 \mathrm{~s}=5.1 \mathrm{~m} / \mathrm{s}$
1500 m in 292 s
2a) 2 hrs at $80 \mathrm{~km} / \mathrm{h}=160 \mathrm{~km}$
2b) 7 hus at $23 \mathrm{mph}=161$ miles
2c) 6 sec at $9 \mathrm{~m} / \mathrm{s}=54 \mathrm{~m}$
2d) 1 dayan $12 \mathrm{mph}=24 \times 12=288$ miles

