Completing the Square

$$
\begin{aligned}
\text { Consider } & (x+a)^{2} \\
= & (x+a)(x+a) \\
= & x^{2}+a x+a x+a^{2} \\
= & x^{2}+2 a x+a^{2}
\end{aligned}
$$

When completing the square we wish to
write a quadratic expression as $(x+a)^{2}+b$

$$
\begin{aligned}
\text { ExI } & x^{2}+6 x+10 \\
= & (x+3)^{2}+10-9 \\
= & (x+3)^{2}+1
\end{aligned}
$$

$$
\begin{aligned}
&(x+3)(x+3) \\
&= x^{2}+3 x+3 x+9 \\
& x^{2}+6 x+9
\end{aligned}
$$

Writing $(x+3)^{2}$ introduced +9 we did not want so we subtracted it. The +3 came from half the +6

$$
\begin{aligned}
E \times 2= & x^{2}+8 x+5 \\
= & (x+4)^{2}+5-16 \\
= & (x+4)^{2}-11 \\
E \times 3= & x^{2}-10 x+50 \\
= & (x-5)^{2}+50-25 \\
= & (x-5)^{2}+25
\end{aligned}
$$

Exercise
1)

$$
\begin{aligned}
& x^{2}+2 x+3 \\
= & (x+1)^{2}+3-1 \\
= & (x+1)^{2}+2
\end{aligned}
$$

2)
3)

$$
\begin{aligned}
& x^{2}+10 x+30 \\
= & (x+5)^{2}+30-25 \\
= & (x+5)^{2}+5
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-4 x+10 \\
= & (x-2)^{2}+10-4 \\
= & (x-2)^{2}+6
\end{aligned}
$$

4)
5)

$$
\begin{aligned}
& x^{2}-8 x-3 \\
= & (x-4)^{2}-3-16 \\
= & (x-4)^{2}-19 \\
& x^{2}+5 x+10 \\
= & \left(x+\frac{5}{2}\right)^{2}+10-\frac{25}{4} \\
= & \left(x+\frac{5}{2}\right)^{2}+\frac{40}{4}-\frac{25}{4} \\
= & \left(x+\frac{5}{2}\right)^{2}+\frac{15}{4}
\end{aligned}
$$

6)
7)

$$
\begin{aligned}
& x^{2}-3 x+5 \\
= & \left(x-\frac{3}{2}\right)^{2}+5-\frac{9}{4} \\
= & \left(x-\frac{3}{2}\right)^{2}+\frac{20}{4}-\frac{a}{4}=\left(x-\frac{3}{2}\right)^{2}+\frac{11}{4}
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}+x+3 \\
= & \left(x+\frac{1}{2}\right)^{2}+3-\frac{1}{4} \\
= & \left(x+\frac{1}{2}\right)^{2}+\frac{12}{4}-\frac{1}{4}=\left(x+\frac{1}{2}\right)^{2}+\frac{11}{4}
\end{aligned}
$$

