Pythagoras Theorem

Pythagoras Theorem

$$
a^{2}+b^{2}=c^{2}
$$

Proof Consider area of figure above

It is a square of side length $a+b$

$$
\begin{aligned}
\therefore \quad \text { Area } & =(a+b)(a+b) \\
& =a^{2}+a b+a b+b^{2} \\
& =a^{2}+b^{2}+2 a b
\end{aligned}
$$

The figure above can also be considered as the sum of 4 triangles plus the smaller square in the middle.

$$
\begin{aligned}
\text { Area } & =4 \times \frac{1}{2} a b+c^{2} \\
& =2 a b+c^{2}
\end{aligned}
$$

The figure can only have one area so

$$
a^{2}+b^{2}+2 a b=2 a b+c^{2}
$$

Subtracting $2 a b$ from both sides gives

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Triples (where all sides are integers)

$$
3,4,5 \quad 5,12,13 \quad 7,24,25 \quad 8,15,17
$$

Pythagoras Theorem

Ex

Ex 2

$$
a^{2}+b^{2}=c^{2}
$$

Given any two sides of a right-angled triangle we can use Pythagoras Theorem to find the third side

By Pythagoras

$$
\begin{aligned}
& 19^{2}+22^{2}=x^{2} \\
& 845=x^{2} \\
& \sqrt{845}=x \\
& x=29.1 \mathrm{~cm}
\end{aligned}
$$

By Pythagoras

$$
\begin{aligned}
& x^{2}+17^{2}=33^{2} \\
& x^{2}=33^{2}-12^{2} \\
& x^{2}=800 \\
& x=\sqrt{800} \\
& x=28.3 \mathrm{~m}
\end{aligned}
$$

Classwork - Exercise from The Maths Teacher.com

