Quartiles For Small Samples
There is no generally accepted method for identifying quartiles in small samples. We will use the following method.

If the sample size is even we will identity the lower and upper quartiles Q_{1} and Q_{3} by finding the median of the bottom half of the data and the median of the top halt of the data.

If the sample size is odd we will ignore the middle item and proceed as above.

Ext 6 items

$$
\frac{5,8,9,9,10,12}{\uparrow} \frac{\uparrow}{\uparrow}
$$

Lower $Q_{\text {vastile }} Q_{1}=8$
Median $Q_{2}=9$
Upper Quartile $Q_{3}=10$

Inter Quartile Range ($I Q R$) $=Q_{3}-Q_{1}$

$$
=10-8
$$

$$
=2
$$

Ex2 Titems

$$
\frac{4,6,8,10,10,12,15}{\uparrow}, \frac{\uparrow}{Q_{1}} Q_{2} \quad Q_{3}
$$

$$
\begin{aligned}
L Q & Q_{1}
\end{aligned}=6
$$

IQR

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =12-6 \\
& =6
\end{aligned}
$$

Ex 38 items

$$
\frac{5,7,7,10,12,14,15,19}{\uparrow} \frac{\uparrow}{Q_{1}} \operatorname{Q}_{2} \quad Q_{3}
$$

$L Q \quad Q_{1}=7$
Madime $Q_{2}=11$
$U Q \quad Q_{3}=14.5$
$I Q R$

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =14.5-7 \\
& =7.5
\end{aligned}
$$

Ex4 qitens

$$
\frac{3,3,6,7,7,10,12,12,15}{\uparrow} \uparrow_{1} \frac{\uparrow}{Q_{1}} Q_{2}
$$

$$
\angle Q \quad Q_{1}=4.5
$$

Median $Q_{2}=7$
$I Q R$

$$
U Q \quad Q_{3}=12
$$

$$
\begin{aligned}
& =Q_{3}-Q_{1} \\
& =12-4.5 \\
& =7.5
\end{aligned}
$$

