3 a Use the 'Babylonian' iterative formula

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{2}{2 x_{n}}
$$

to find a fraction approximation to $\sqrt{2}$.

Use three iterations starting with the estimate $x_{1}=1$.
b What is the result of squaring your answer to \mathbf{a} ?

Did you know...

Some historians believe that 4000 years ago Babylonian mathematicians used iterative formula to find the square roots of numbers.

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{1}{n^{x}}
$$

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=\frac{1}{2}+\frac{1}{1}=1.5
\end{aligned}
$$

$$
\begin{gathered}
x_{3}=\frac{1.5}{2}+\frac{1}{1.5}=1.417 \\
x_{4}=\frac{1.417}{2}+\frac{1}{1.417}=1.4142 \\
\sqrt{2} \approx 1.4142
\end{gathered}
$$

$$
(1.4142)^{2}=1.99996
$$

So it is a very good approximation to $\sqrt{2}$

4 a Use the 'Babylonian' iterative formula

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{3}{2 x_{n}}
$$

to find a fraction approximation to $\sqrt{3}$.
Use two iterations starting with the estimate $x_{1}=2$.
b What happens if you use the much simpler formula $x_{n+1}=\frac{3}{x_{n}}$?

$$
x_{n+1}=\frac{x_{n}}{2}+\frac{3}{2 x_{n}}
$$

$$
\begin{aligned}
& x_{1}=2 \\
& x_{2}=\frac{2}{2}+\frac{3}{(2 \times 2)}=1.75 \\
& x_{3}=\frac{1.75}{2}+\frac{3}{(2 \times 1.75)}=1.732 \\
& x_{4}=\frac{1.732}{2}+\frac{3}{(2 \times 1.732)}=1.732
\end{aligned}
$$

$$
\begin{aligned}
x_{3} & =\frac{1.75}{2}+\frac{3}{(2 \times 1.75)}
\end{aligned}=1.732
$$

b)

$$
\begin{aligned}
& x_{n+1}=\frac{3}{x_{n}} \quad x_{1}=2 \\
& x_{2}=\frac{3}{2}=1.5 \\
& x_{3}=\frac{3}{1.5}=2
\end{aligned}
$$

Formula would give results that do not
converge to $\sqrt{3}$ but oscillate between 1.5 and 2

5 In 2010, a survey of the birds on an island counted approximately 200 kittiwakes.
A conservationist used the logistic equation

$$
P_{n+1}=P_{n}\left(1.4-0.001 P_{n}\right)
$$

to predict the expected population, P_{n}, n years later.
a What did the equation predict for the size of the colony of kittiwakes each year from 2011 to 2015?
b Describe in your own words how the size of the colony was expected to change.
c Assuming that the size of the colony will stabilise at a roughly constant value, find this equilibrium size.

$$
\begin{aligned}
& P_{n+1}=P_{n}\left(1.4-0.001 P_{n}\right) \\
& 2010 \quad 200 \\
& 2011 \quad 200(1.4-0.001 \times 200) \\
&=240 \\
& 2012 \quad 240(1.4-0.001 \times 240) \\
&=278.4=279 \\
& 2013 \quad 279(1.4-0.001 \times 279) \\
&=312.759=313 \\
& 2014 \quad 313(1.4-0.001 \times 313) \\
&=340.231=340 \\
& 2015 \quad 340(1.4-0.001 \times 340) \\
&=360.4=360
\end{aligned}
$$

b) Population is increasing bof rate of increate gradually slows down.
C) Population will stabilise when P_{n} is being multiplied by 1

$$
\text { so } \begin{gathered}
\left(1.4-0.001 P_{n}\right)=1 \\
1.4=1+0.001 \mathrm{P}_{n} \\
0.4=0.001 \mathrm{Pn} \\
\frac{0.4}{0.001}=P_{n} \\
P_{n}=400
\end{gathered}
$$

Stabilses at around 400

